Tìm x,y
a,x+y=9
b,2×4《2×x+y《2×5
Tìm tất cả các số nguyên x,y
a)\(\dfrac{x}{2}=\dfrac{y}{5} mà x+y=35\)
b)\(\dfrac{x+2}{y+10}=\dfrac{1}{5} và y-3x=2\)
c)\(\dfrac{x}{4}=\dfrac{y}{5} và 2x-y=15\)
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)
\(b.\)
\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)
\(c.\)
\(\dfrac{x}{4}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(10;25)
b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
mà y-3x=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(1;5)
c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)
nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)
mà 2x-y=15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(20;25)
Tìm ,x,y,z,t biết
a,12/-6=x/5=-y/3=2/-17=-t/-9
b,-24/-6=x/3=4/y2=z3/-2
a: Sửa đề: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{2}{-z}=\dfrac{-t}{-9}\)
=>\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{-2}{z}=\dfrac{t}{9}=-2\)
=>\(x=-2\cdot5=-10;y=-2\cdot\left(-3\right)=6;z=\dfrac{-2}{-2}=1;t=9\cdot\left(-2\right)=-18\)
b: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>\(\left\{{}\begin{matrix}x=4\cdot3=12\\y^2=\dfrac{4}{4}=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)
tìm x;y
A) \(\dfrac{2}{5}x-\dfrac{1}{3}=-1\dfrac{1}{2}:\dfrac{5}{4}\)
B) x;y tỉ lệ thuận với 5 và 3 và x+y=32
c) x;y tỉ lệ nghịch với 5 và 3 và x+y = 32
Tìm x, y
a) 2 5/x = 21/x (x ∈ N*)
b) x/7 = 5/y (x; y ∈ Z, x > y)
a, bạn viết rõ đề ra nhé
b, \(\Rightarrow xy=35\Rightarrow x;y\inƯ\left(35\right)=\left\{\pm1;\pm5;\pm7;\pm35\right\}\)
x | 1 | -1 | 5 | -5 | 7 | -7 | 35 | -35 |
y | 35 | -35 | 7 | -7 | 5 | -5 | 1 | -1 |
tìm số nguyên x,y
a\(y^2\)=3-|2x-3|
b2.\(y^2\)=3-|x+4|
c25-\(y^2\)=8.\(\left(x-2021\right)^2\)
Giải:
a) \(y^2=3-\left|2x-3\right|\)
Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow\left|2x-3\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
TH2:
\(y^2=1\)
\(\Rightarrow y=\pm1\)
Giải:
a) \(y^2=3-\left|2x-3\right|\)
Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow3-\left|2x-3\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (t/m)
TH2:
\(y^2=1\)
\(\Rightarrow y=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}3-\left|2x-3\right|=1\\3-\left|2x-3\right|=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\\x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\) (loại vì \(x;y\in Z\) )
b) \(2.y^2=3-\left|x+4\right|\)
Vì \(-\left|x+4\right|\le0\forall x\) nên \(3-\left|x+4\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow3-\left|x+4\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\) (t/m)
TH2:
\(y^2=1\)
\(\Rightarrow3-\left|x+4\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\) (t/m)
c) \(25-y^2=8.\left(x-2021\right)^2\)
Vì \(\left(x-2021\right)^2\le0\forall x\) nên \(8.\left(x-2021\right)^2\le0\forall x\) nên \(y^2\in\left\{0\right\}\) (vì \(y\in Z\) )
\(y^2=0\)
\(\Rightarrow8.\left(x-2021\right)^2=25\)
Vì \(\dfrac{25}{8}\) ko có p/s mũ 2 nên \(x\in\) ∅
Chúc bạn học tốt!
Vì -/2x-3/< 0 với mọi x nên 3-/2x-3/< 3 với mọi x -> y2< 3 -> y2 thuộc {0;1} ( vì y thuộc z)
Th1: y2=0-> y=0-> /2x-3/=3-> 2x-3=3 hoặc 2x-3=-3<-> x=0 hoặc x=3
Th2: y2=1-> y=+ 1-> /2x-3/=2-> 2x-3=2 hoặc 2x-3=-2 (loại vì x nguyên)
Câc câu còn lại bạn làm tương tự nhé
Chúc bạn học tốt!
cho xin hỏi kết quả của bài này là gì 1:tim x/y
a)2/3 x x/y = 8/15 b)x/y : 3/4 =2/5 c)3/5 : x/y =4/7
Tìm giá trị nhỏ nhất và giá trị lớn nhất
a, A = y - 2x + 5 với 36x2 + 16y2 = 9
b, B = 2x - y - 2 với \(\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)
Lời giải:
a)
Áp dụng BĐT Bunhiacopxky:
\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)
\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)
Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$
b)
Áp dụng BĐT Bunhiacopxky:
\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)
\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)
Vậy $B_{min}=-7; B_{\max}=3$
Bài 2:Tìm y
a) 242/363 + 1616/2121 = 2/7 x y
b) (y + 1/4) + (y + 1/16) + (y + 1/16) =2
\(a,\dfrac{242}{363}+\dfrac{1616}{2121}=\dfrac{2}{7}\times y\)
\(\dfrac{2}{7}\times y=\dfrac{2\times121}{3\times121}+\dfrac{16\times101}{21\times101}\)
\(\dfrac{2}{7}\times y=\dfrac{2}{3}+\dfrac{16}{21}\)
\(\dfrac{2}{7}\times y=\dfrac{14}{21}+\dfrac{16}{21}\)
\(\dfrac{2}{7}\times y=\dfrac{30}{21}\)
\(\dfrac{2}{7}\times y=\dfrac{10}{7}\)
\(y=\dfrac{10}{7}:\dfrac{2}{7}\)
\(y=\dfrac{10}{7}\times\dfrac{7}{2}\)
\(y=5\)
\(---\)
\(b,\left(y+\dfrac{1}{4}\right)+\left(y+\dfrac{1}{16}\right)+\left(y+\dfrac{1}{16}\right)=2\)
\(\left(y+y+y\right)+\left(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{16}\right)=2\)
\(3\times y+\left(\dfrac{4}{16}+\dfrac{2}{16}\right)=2\)
\(3\times y+\dfrac{6}{16}=2\)
\(3\times y+\dfrac{3}{8}=2\)
\(3\times y=2-\dfrac{3}{8}\)
\(3\times y=\dfrac{16}{8}-\dfrac{3}{8}\)
\(3\times y=\dfrac{13}{8}\)
\(y=\dfrac{13}{8}:3\)
\(y=\dfrac{13}{8}\times\dfrac{1}{3}\)
\(y=\dfrac{13}{24}\)
#\(Toru\)
` 242/363 + 1616/2121 = 2/7 xxy`
`2/7 xxy= 2/3 + 16/21`
`2/7 xxy= 14/21 +16/21`
`2/7 xxy= 30/21`
`y=10/7 : 2/7`
`y=10/7 xx 7/2`
`y=70/14`
`y=5`
__
` (y + 1/4) + (y + 1/16) + (y + 1/16) =2`
`(y+y+y)+(1/4 + 1/16+1/16)=2`
`3y + (4/16 +1/16 +1/16)=2`
`3y + 6/16=2`
`3y=2-6/16`
`3y= 32/16-6/16`
`3y= 26/16`
`y=26/16 : 3`
`y=26/48`
`y=13/24`
tìm x,y
A) \(x^3+y^3=6xy-8\)
B)\(x^3-y^3=xy+8\)
C)\(x^2+xy+y^2=x^2y^2\)
Để giải phương trình này, chúng ta có thể sử dụng công thức khai triển đa thức. Với phương trình A) x^3 + y^3 = 6xy - 8, ta có thể thay thế x^3 và y^3 bằng (x + y)(x^2 - xy + y^2) và tiếp tục giải từ đó. Tương tự, chúng ta có thể áp dụng công thức khai triển đa thức cho các phương trình B) và C) để tìm giá trị của x và y.
1.Tìm số nguyên x
a,2x-5 chia hết cho x-1
b,3x+4 chia hết cho x-3
c,x-2 là ước của x2+8
2,Tìm x=Z
a,3x+2 chia hết cho x-1
b,x2+2x-7 chia hết cho x+2
3,Tìm cặp số nguyên x,y
a,(x-1).(y+1)=5
b,x.(y+2)= -8
Làm ơn mn giải nhanh giúp mình ngày mai mình phải nộp r!
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)