x/3 = y/4 , y/3 = z/2 - 3y + z =0
Tìm x,y,z biết:
A)x/y=3/4 và 2x+ 5y= 10
B) 2x/3y=-1/3 và 2x+ 3y= 7
C) 21x=19y và x-y= 4
D) x/10=y/6=z/21 và 5x+y-2z=28
E) x/3=y/8=z/5 và 3x +y - z= 14
F) x/3=y/4 vày/5=z/7 và 2x+ 3y- z= 372
G) 2x= 3y= 5z (1) và x+ y- z= 95
H) 1/2x= 2/3y= 3/4z (1) và x- y= 15
M) x/5= y/3 và 2^2- y^2= 4 (x, y>0)
N) x/7 = y/4 và x.y= 118
I) x-1/2= y-2/3= z-3/4 (1) và 2x + 3y - z = 50
K) x/3= y/4 = z/6 và x.y.z = 576
GIÚP MK VỚI MK ĐANG CẦN GẤP
Tìm x ,y ,z biet :
a, |x+3/4|+|y-1/5|+|x+y+z|=0
b, |3x-4|+|3y-5|=0
c,|x+3/4|+|y-2/5|+|z+1/2| <0
d, |x+1/5|+|3-y|=0
a) \(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)
\(\Rightarrow|x+\frac{3}{4}|=|y-\frac{1}{5}|=|x+y+z|=0\)
\(\Rightarrow|x+\frac{3}{4}|=0\) \(\Rightarrow|y-\frac{1}{5}|=0\) \(\Rightarrow|x+y+z|=0\)
\(\Rightarrow x+\frac{3}{4}=0\) \(\Rightarrow y-\frac{1}{5}=0\) \(\Rightarrow x+y+z=0\)
\(x=\frac{-3}{4}\) \(y=\frac{1}{5}\) thay x=-3/4; y=1/5 vào biểu thức trên
ta có \(\frac{-3}{4}+\frac{1}{5}+z=0\)
\(z=0-\frac{-3}{4}-\frac{1}{5}\)
VẬY X=-3/4; Y=1/5; Z=11/20
B) \(|3x-4|+\left|3y-5\right|=0\)
\(\Rightarrow\left|3x-4\right|=\left|3y-5\right|=0\)
\(\Rightarrow\left|3x-4\right|=0\) \(\Rightarrow\left|3y-5\right|=0\)
\(3x-4=0\) \(3y-5=0\)
\(3x=4\) \(3y=5\)
\(x=\frac{4}{3}\) \(y=\frac{5}{3}\)
VẬY X= 4/3; Y=5/3
C) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)
ĐỂ \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|;\left|y-\frac{2}{5}\right|;\left|z+\frac{1}{2}\right|< 0\)
MÀ GIÁ TRỊ TUYỆT ĐỐI LUÔN MANG SỐ NGUYÊN DƯƠNG
\(\Rightarrow x;y;z\in\varnothing\)
d) \(\left|x+\frac{1}{5}\right|+\left|3-y\right|=0\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=\left|3-y\right|=0\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=0\) \(\Rightarrow\left|3-y\right|=0\)
\(x+\frac{1}{5}=0\) \(3-y=0\)
\(x=\frac{-1}{5}\) \(y=3\)
VẬY X= -1/5; Y=3
CHÚC BN HỌC TỐT!!!!!!!
Ta có :
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=\frac{11}{20}\end{cases}}\)
Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)
\(b)\) Ta có :
\(\left|3x-4\right|+\left|3y-5\right|=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-4=0\\3y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=4\\3y=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\y=\frac{5}{3}\end{cases}}}\)
Vậy \(x=\frac{4}{3}\) và \(y=\frac{5}{3}\)
Bài 3: Tìm x,y,z biết
a) x : y : z =4: 3 :9 và x - 3y + 4z = 62
c) x : y : z = 1 : 2 : 3 và 4x - 3y + 2z = 36
e) x : y : z = 2 : 3 : 4 và x + 2y - 3z = -20
g) x : y : (- z ) = 3 : 8 : 5 và 4x + 3y + 2z = 52
i) x : y : z = 3 : 5 : (-2) và 5x - y + 3z = 124
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}4x^3+y^2-2y+5=0\\x^2+x^2y^2-4y+3=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{2x^2}{x^2+1}=y\\\dfrac{3y^3}{y^4+y^2+1}=z\\\dfrac{4z^4}{z^6+z^4+z^2+1}=x\end{matrix}\right.\)
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)
1, x : y : z = 2 : 3 : 4 và x + y + z = 18
2, \(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}\) và 4x - 3y - 2z = 81
3, \(\dfrac{x}{3}=\dfrac{y}{2};\) 4y = 3z và x + y +z = 46
4, 5x = 3y; \(\dfrac{y}{z}=\dfrac{3}{2}\) và 2x + 3y -4z =34
1) \(x:y:z=2:3:4\) ⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)
⇒ x=4;y=6;z=8
\(1,\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng t/c dtsbn
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot4=8\end{matrix}\right.\)
\(2,\) Áp dụng t/c dtsbn
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{3y}{-9}=\dfrac{2z}{8}=\dfrac{4x-3y-2z}{8-\left(-9\right)-8}=\dfrac{81}{9}=9\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot\left(-3\right)=-6\\z=2\cdot4=8\end{matrix}\right.\)
\(3,4y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{6}=\dfrac{z}{8};\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{9}=\dfrac{y}{6}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}\)
Áp dụng t/c dtsbn
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{x+y+z}{9+6+8}=\dfrac{46}{23}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot6=12\\z=2\cdot8=16\end{matrix}\right.\)
\(4,5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{9}=\dfrac{y}{15};\dfrac{y}{z}=\dfrac{3}{2}\Rightarrow\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x}{18}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{18+45-40}=\dfrac{34}{23}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{34}{23}\cdot9=\dfrac{306}{23}\\y=\dfrac{34}{23}\cdot15=\dfrac{510}{23}\\z=\dfrac{34}{23}\cdot10=\dfrac{340}{23}\end{matrix}\right.\)
Đề:
Giá trị của y thoả mãn x2 + y2 + z2 = xy + 3y + 2z - 4 với x, y, z \(\in\) Z.
Giải:
x2 + y2 + z2 = xy + 3y + 2z - 4
x2 - xy + y2 - 3y + z2 - 2z + 4 = 0
\(x^2-2\times x\times\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}-3y+3+z^2-2z+1=0\)
\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y^2}{4}-2\times\frac{y}{2}\times1+1^2\right)+\left(z-1\right)^2=0\)
\(\left(x-\frac{y}{2}\right)+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)
\(\left\{\begin{matrix}x-\frac{y}{2}=0\\\frac{y}{2}-1=0\\z-1=0\end{matrix}\right.\)
\(\frac{y}{2}=1\)
\(y=2\)
ĐS: 2
~ Nana ~
Bài 3 : a) Tìm x,y,z biết :
2x = 3y ; 4y = 5z và 4x - 3y + 5z = 7
b) x^3 phần 8 = y ^3 phần 64 = z^3 phần 216 và x^2 +y^2 + z^2 = 14
Bài 4 : Cho 3 số x,y,z khác 0 thỏa mãn :
y + z - x phần x = z + x - y phần y = x + y - z phần z hãy tính giá trị biểu thức :
C = ( 1 + y phần x ) ( 1 + y phần z ) ( 1 + z phần x )
Bài 5 : Tìm x,y,z biết : 2x = 3y = 5z và | x - 2y | = 5
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
1, X/10 = Y/6 = z/21 và 5x+y -2z = 28
2. 3x=2y ; 7y = 5z và x-y+z = 32
3. x/3 = y/4 ; y/3 = z/3 và 2x-3y+ z = 6
4. 2x/3 = 3y/4 = 4z/5 và x+y+z = 49
5. x-1/2 = y-2/3 = z-3/4 và 2x+3y -2 = 50
Mình làm một câu ví dụ thui nha
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{5x}{50}=2\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow x=42\)
mấy câu khác thì tương tự
tíc mình nha bạn
a, x/5=y/3 và 5x-3y=8
b, x/3=y/4 ; y/5 = z/7 va 2x+ 3y-z=124
c, 3x=2y ; 7y=5z va x-y+z=32
đ, 2x/3=3y/4=4z/5 và x+y+z=49
e, 2x=3y=5z va x+y-z=95
f, x-1/2=y-2/3=z-3/4 va 2x+3y-z=50
Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)
ap dung tinh chat day ti so = nhau nhoaaaaaaaaaaaaaaaa
tk mk nhe