Câu IV: (hình bạn tự vẽ nhá)
a) Xét tam giác ABH vuông tại H và tam giác CBA vuông tại A :
Góc B chung
Góc AHB = Góc CAB = (90o)
=> Tam giác ABH ~ Tam giác CBA (g-g)
=> \(\dfrac{AH}{BH}\)= \(\dfrac{AC}{AB}\) (1)
Xét tam giác ACH vuông tại H và tam giác BCA vuông tại A:
Góc C chung
Góc AHC= Góc BAC (=90o)
=> Tam giác ACH ~ Tam giác BCA (g-g)
=> \(\dfrac{CH}{AH}\)= \(\dfrac{AC}{AB}\) (2)
Từ (1) và (2) suy ra \(\dfrac{AH}{BH}\) = \(\dfrac{CH}{AH}\) => AH2 = BH.CH
b) Áp dụng định lý Pytago trong tam giác ABC vuông tại A:
AB2 + AC2 = BC2
212 + 282 = BC2
=> BC = \(\sqrt{21^2+28^2}\)= 35(cm)
AD là tia phân giác góc BAC (GT)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CD}\) => \(\dfrac{AB}{AC+AB}\)= \(\dfrac{BD}{BD+CD}\)
=> \(\dfrac{AB}{AB+AC}\) = \(\dfrac{BD}{BC}\)
=> \(\dfrac{21}{21+28}\) = \(\dfrac{BD}{35}\)
=> BD = 35 . 21 : (21+28) = 15(cm)
=> DC = BC - BD = 35 - 15 = 20 (cm)
c) DE //AB (GT)
=> Tam giác CAB ~ Tam giác CED
=> (\(\dfrac{BC}{DC}\)) 2 = \(\dfrac{S_{CAB}}{S_{CED}}\)<=> (\(\dfrac{7}{4}\))2 = \(\dfrac{49}{16}\)= \(\dfrac{\left(AB.AC\right):2}{S_{CED}}\)
<=> \(\dfrac{49}{16}\) = \(\dfrac{\left(21.28\right):2}{S_{CED}}\)
<=> \(\dfrac{49}{16}\)= \(\dfrac{294}{S_{CED}}\)
=> SCED = \(\dfrac{16.294}{94}\)= 96 (cm2)