Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thùy Linh

Cho tam giác ABC vuông tại A, đường phân giác AD. Gọi E là hình chiếu của D trên AB, F là hình chiếu của D trên AC. Biết DB =2cm , DC=3cm. Tổng diện tích của tam giác DEB và tam giác DFC là _______cm2

Phương An
12 tháng 2 2017 lúc 11:58

BC = BD + DC = 2 + 3 = 5 (cm)

DEA = EAF = AFD = 900

=> AEDF là hcn có AD là tia phân giác

=> AEDF là hình vuông

=> \(\left\{\begin{matrix}\text{AF//ED}\\\text{AE//FD}\\DF=ED\end{matrix}\right.\)

Tam giác ABC có AD là tia phân giác

=> \(\frac{AB}{AC}=\frac{DB}{DC}=\frac{2}{3}\) (định lý)

=> \(\left\{\begin{matrix}AB=\frac{2}{3}AC\\AC=\frac{3}{2}AB\end{matrix}\right.\)

Tam giác ABC vuông tại A có:

AB2 + AC2 = BC2 (định lý Pytago)

\(AB^2+\left(\frac{3}{2}AB\right)^2=5^2\)

\(AB=\frac{10\sqrt{13}}{13}\) (cm)

Theo định lý Talet, ta có:

\(\frac{DF}{AB}=\frac{CD}{BC}=\frac{3}{5}\Rightarrow DF=\frac{3}{5}AB=\frac{3}{5}\times\frac{10\sqrt{13}}{13}=\frac{6\sqrt{13}}{13}\left(cm\right)\)

\(\frac{FC}{AC}=\frac{DF}{AB}=\frac{DF}{\frac{2}{3}AC}=\frac{\frac{3}{2}DF}{AC}\Rightarrow FC=\frac{3}{2}DF\)

\(\frac{BE}{AB}=\frac{ED}{AC}=\frac{ED}{\frac{3}{2}AB}=\frac{\frac{2}{3}ED}{AB}\Rightarrow BE=\frac{2}{3}ED\)

\(S_{DEB}=ED\times EB\times\frac{1}{2}=ED\times\frac{2}{3}ED\times\frac{1}{2}=\frac{1}{3}DE^2=\frac{1}{3}DF^2\left(cm^2\right)\)

\(S_{DFC}=DF\times FC\times\frac{1}{2}=DF\times\frac{3}{2}DF\times\frac{1}{2}=\frac{3}{4}DF^2\left(cm^2\right)\)

\(S_{DEB}+S_{DFC}=\frac{3}{4}DF^2+\frac{1}{3}DF^2=\frac{3}{4}\left(\frac{6\sqrt{13}}{13}\right)^2+\frac{1}{3}\left(\frac{6\sqrt{13}}{13}\right)^2=3\left(cm^2\right)\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Van Xuân Trần
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
iem là ling và iem cảm t...
Xem chi tiết
Big City Boy
Xem chi tiết