Cho a, b, c > 0. CMR (dùng BĐT Schur) :
4\(\left(a+b+c\right)\)(ab + bc + ca) ≤ \(\left(a+b+c^{ }\right)^3\) + 9abc
đặt \(P=\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}\)
Q=8ab(4a+4b+c)+8bc(4b+4c+a)+8ca(4c+4a+b)
=32(a+b+c)(ab+bc+ca)-72abc
áp dụng holder ta có:
\(P^2Q\ge8\left(a+b+c\right)^3\)
theo schur thì \(\left(a+b+c\right)^3\ge4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\)
\(\Rightarrow8\left(a+b+c\right)^3\ge32\left(a+b+c\right)\left(ab+bc+ca\right)-72abc\)
\(\Rightarrow P^2\ge\frac{8\left(a+b+c\right)^3}{Q}\ge1\left(Q.E.D\right)\)
Cho a,b,c > 0 . Cmr: \(a^2+b^2+c^2+\frac{9abc}{a+b+c}-2\left(ab+bc+ca\right)\ge0\)
chứng minh \(\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)
** Bài này chỉ đúng khi $a,b,c$ không âm thôi bạn nhé.
Lời giải:
Theo BĐT Schur:
$a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(c+a)$
$\Rightarrow a^3+b^3+c^3+6abc\geq (a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)+6abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3[(a+b)(b+c)(c+a)+abc]+6abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3(a+b)(b+c)(c+a)+9abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow (a+b+c)^3+9abc\geq 4(a+b+c)(ab+bc+ac)$
Dấu "=" xảy ra khi $a=b=c$
Mạnh hơn BĐT Schur
Cho a,b,c là các số thực không âm,chứng minh rằng:
\(a^3+b^3+c^3\ge\frac{\left(ab^2+bc^2+ca^2\right)^2}{a^2b+b^2c+c^2a}+\frac{\left(a^2b+b^2c+c^2a\right)^2}{ab^2+bc^2+ca^2}\)
Ở đây chúng tôi không SOS hay ST s o s cái gì hết :P
Cho a = b = c = 1 thử xem:P
giả sử a,b,c là các số thực dương CMR
\(\dfrac{b^2c^3}{a^2\left(b+c\right)^3}+\dfrac{c^2a^3}{b^2\left(a+c\right)^3}+\dfrac{a^2c^3}{c^2\left(a+b\right)^3}\ge\dfrac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
Cho \(a,b,c>0\)
CMR :\(\frac{a^4}{b\left(b+c\right)}+\frac{b^4}{c\left(c+a\right)}+\frac{c^4}{a\left(a+b\right)}\ge\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng bđt Svac-xo ta có :
\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+ab+bc+ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)
Dấu "-" xảy ra \(< =>a=b=c\)
Cho a;b;c > 0 và ab+bc+ca=abc. CMR :
\(\dfrac{a^4+b^4}{ab\left(a^3+b^3\right)}+\dfrac{b^4+c^4}{bc\left(b^3+c^3\right)}+\dfrac{c^4+a^4}{ca\left(c^3+a^3\right)}\ge1\)
Lời giải:
Ta có:
\(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Xét \(a^4+b^4-(ab^3+a^3b)=(a-b)(a^3-b^3)\)
\(=(a-b)^2(a^2+ab+b^2)\geq 0\forall a,b> 0\)
\(\Rightarrow a^4+b^4\geq ab^3+a^3b\)
\(\Rightarrow 2(a^4+b^4)\geq (a^3+b^3)(a+b)\)
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)(a+b)}{2ab(a^3+b^3)}=\frac{a+b}{2ab}=\frac{1}{2a}+\frac{1}{2b}\)
Thực hiện tương tự với các phân thức còn lại:
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}+\frac{b^4+c^4}{bc(b^3+c^3)}+\frac{c^4+a^4}{ca(c^3+a^3)}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=3\)
(Nghi binh 27/09)
Bài 1: Cho a,b,c>0. Chứng minh rằng \(\frac{a^3+b^3+c^3}{abc}+\frac{9\left(ab+bc+ca\right)}{a^2+b^2+c^2}\ge12\)
Bài 2: Cho a,b,c>0. Chứng minh rằng: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\ge16\)
Mình thấy hai bài trên phải vận dụng linh hoạt các hđt và các bđt đã biết.
Bonus thêm bài: Cho a,b,c>0. Chứng minh rằng:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\ge2\)
Bài này khó hơn cả vì bđt đã biết cần dùng nó khá khó nhớ.
Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)
Áp dụng BĐT AM-GM ta có:
\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)
Suy ra BĐT đã cho là đúng nếu ta chứng minh được
\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)
Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)
Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
Bài 3:
Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)
Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)
Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:
\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)
Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề
Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị
Wow bạn giỏi quá, đúng những bđt mình muốn thấy! Nhưng mà bạn làm được phần cuối không, tại mình chưa giải được.
Cho a,b,c∈R.CM bđt \(a^2+b^2+c^2\ge ab+bc+ca\) (1). Áp dụng cm các bđt sau:
a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
b)\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
c)\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d)\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
e)\(\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}vớia,b,c>0\)
f)\(a^4+b^4+c^4\ge abc\) nếu a+b+c=1
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
a/ Từ BĐT ban đầu ta có:
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)
b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:
\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)
c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:
\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:
\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)
Mặt khác ta cũng có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
e/ Chia 2 vế của BĐT ở câu c cho 9 ta được:
\(\frac{\left(a+b+c\right)^2}{9}\ge\frac{ab+bc+ca}{3}\)
Khai căn 2 vế: \(\Rightarrow\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}\)
f/ Áp dụng BĐT ở câu d:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)=abc\) (do \(a+b+c=1\))