** Bài này chỉ đúng khi $a,b,c$ không âm thôi bạn nhé.
Lời giải:
Theo BĐT Schur:
$a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(c+a)$
$\Rightarrow a^3+b^3+c^3+6abc\geq (a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)+6abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3[(a+b)(b+c)(c+a)+abc]+6abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3(a+b)(b+c)(c+a)+9abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow (a+b+c)^3+9abc\geq 4(a+b+c)(ab+bc+ac)$
Dấu "=" xảy ra khi $a=b=c$