§1. Bất đẳng thức

Trần Ngọc Minh Khoa

∀a,b,c > 0. chứng minh rằng:

\(\dfrac{\left(a+b\right)^2}{c^2+ab}+\dfrac{\left(b+c\right)^2}{a^2+bc}+\dfrac{\left(c+a\right)^2}{b^2+ca}\) ≥ 6

giải gấp giùm mình nha mọi người

Neet
4 tháng 3 2018 lúc 22:40

\(BDT\Leftrightarrow\sum\left[\dfrac{\left(a+b\right)^2}{c^2+ab}-2\right]\ge0\)\(\Leftrightarrow\sum\dfrac{a^2+b^2-2c^2}{c^2+ab}\ge0\)(*)

\(\Leftrightarrow\sum\left(\dfrac{a^2-c^2}{c^2+ab}+\dfrac{b^2-c^2}{c^2+ab}\right)\ge0\)

\(\Leftrightarrow\sum\left(c^2-a^2\right)\left(\dfrac{1}{a^2+bc}-\dfrac{1}{c^2+ab}\right)\ge0\)

\(\Leftrightarrow\sum\left(c-a\right)^2.\dfrac{\left(c+a\right)\left(c+a-b\right)}{\left(a^2+bc\right)\left(c^2+ab\right)}\ge0\)

Bình luận (0)
Nguyễn Xuân Tiến 24
3 tháng 3 2018 lúc 21:42

\(\dfrac{\left(a+b\right)^2}{c^2+ab}+\dfrac{\left(b+c\right)^2}{a^2+bc}+\dfrac{\left(c+a\right)^2}{b^2+ca}\ge\dfrac{\left(a+b+b+c+c+a\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)\(=\dfrac{4\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\) (theo AM-GM với a ; b>0)

\(=\dfrac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2+ab+bc+ca}=\dfrac{4.3.\left(a^2+b^2+c^2\right)}{2.\left(a^2+b^2+c^2\right)}\)(do \(a^2+b^2+c^2\ge ab+bc+ca\))

\(=4.1,5\) = 6 ( do a;b;c>0)

Bình luận (2)

Các câu hỏi tương tự
phạm thảo
Xem chi tiết
Thư Trần
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Lợi
Xem chi tiết
Tịnh Nhiên
Xem chi tiết
Neet
Xem chi tiết
Đức Huy ABC
Xem chi tiết
Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Quốc Việt
Xem chi tiết