Tính Giá Trị Biểu Thức A=\(\dfrac{1.3.5...2021}{1012.1013.1014...2021.2022}\)
cho a,b,c là cá số thực thoả mãn
a+b+c=2022 và\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=\(\dfrac{1}{2022}\)
tính giá trị của biểu thức B=\(\dfrac{1}{a^{2021}}\)+\(\dfrac{1}{b^{2021}}\)+\(\dfrac{1}{c^{2021}}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
\(\Rightarrow\dfrac{bc+ca+ab}{abc}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
\(\Rightarrow c=2022\) hay \(a=2022\) hay \(b=2022\)
-Nếu \(a=-b\)\(\Rightarrow B=\dfrac{1}{a^{2021}}+\dfrac{1}{b^{2021}}+\dfrac{1}{c^{2021}}=\dfrac{1}{a^{2021}}-\dfrac{1}{a^{2021}}+\dfrac{1}{2022^{2021}}=\dfrac{1}{2022^{2021}}\)
-Tương tự các trường hợp còn lại.
Tính giá trị của biểu thức, bt: \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\\ A=\dfrac{3.\dfrac{a}{b}-\dfrac{-a}{b}}{-\dfrac{5a}{b}+\dfrac{4a}{b}}\)
\(A=\dfrac{3\cdot\dfrac{a}{b}-\dfrac{-a}{b}}{-\dfrac{-5a}{b}+\dfrac{4a}{b}}\\ =\left(\dfrac{3a}{b}+\dfrac{a}{b}\right):\left(\dfrac{5a}{b}+\dfrac{4a}{b}\right)\\ =\dfrac{4a}{b}:\dfrac{9a}{b}\\ =\dfrac{4a}{b}\cdot\dfrac{b}{9a}\\ =\dfrac{4}{9}\)
Vậy `a=2021/2022` ; `b=2023/2022` thì `A=4/9`
Cho ba số a,b,c thỏa mãn :
+) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
+) \(a+b+c=2022\\ \)
Tính giá trị của biểu thức P = \(\left(a^{2019}+b^{2019}\right)\left(c^{2021}+b^{2021}\right)\left(a^{2023}+c^{2023}\right)\)
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
hay \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+3abc=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
-Xét a + b = 0 => P = 2022^2021
Bạn xét tương tự với b + c = 0 và c + a = 0 dc P = 2022^2021 nhé
a+bab+a+bc(a+b+c)=0a+bab+a+bc(a+b+c)=0
(a+b)[ab+bc+ca+c2abc(a+b+c)]=0(a+b)[ab+bc+ca+c2abc(a+b+c)]=0
(a+b)(b+c)(c+a)=0(a+b)(b+c)(c+a)=0
⇔ a=−b
⇔ b=−c
⇔ c=−a
Thay vào P từng cái rồi tính tiếp nhé
Tính giá trị biểu thức \(A\left(x\right)=x+x^2+x^3+...+x^{2020}+x^{2021}\) tại \(x=\dfrac{1}{2^{2022}}\)
Cho hai số thực a,b thỏa mãn \(2021\le a\le2022,2021\le b\le2022\)
TÌm giá trị lớn nhất của biểu thức: \(A=\left(a+b\right)\left(\dfrac{2021}{a}+\dfrac{2021}{b}\right)\)
Áp dụng bđt `1/x+1/y>=4/(x+y)`
`=>A>=(a+b).(2021.4)/(a+b)`
`=>A>=2021.4=8084`
Dấu "=" xảy ra khi \(\left[ \begin{array}{l}a=b=2021\\a=b=2022\end{array} \right.\)
Giá trị của biểu thức sau bằng bao nhiêu?
2021 × 87 + 20,21 × 1400 - 2021
Tính giá trị biểu thức P=(\(\dfrac{-21}{22}\))x-\(\sqrt{y+1}\)với x,y thỏa mãn (-5)2021.x2020-|y+\(\dfrac{3}{4}\)|≥0
Tìm giá trị của biểu thức bt: \(a=\dfrac{2021}{2022},b=\dfrac{2023}{2022}\\ B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{\dfrac{-5bb}{6}}\)
\(B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{\dfrac{4ab}{6}-\dfrac{9ab}{6}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{-\dfrac{5ab}{6}}{-\dfrac{5bb}{6}}=\dfrac{ab.\dfrac{5}{6}}{bb.\dfrac{5}{6}}\)
\(=\dfrac{ab}{bb}=\dfrac{a}{b}\)
Với \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\), ta được:
\(B=\dfrac{2021}{2022}:\dfrac{2023}{2022}=\dfrac{2021}{2022}.\dfrac{2022}{2023}=\dfrac{2021}{2023}\)
Tính giá trị của biểu thức sau: B= \(\dfrac{tan\left(\dfrac{23\pi}{2}+x\right).sin\left(2022\pi-x\right).cos\left(x-2021\pi\right)}{cos\left(\dfrac{2021\pi}{2}-x\right).sin\left(x+2023\pi\right)}\)
\(=\dfrac{tan\left(\dfrac{pi}{2}+x\right)\cdot sin\left(-x\right)\cdot cos\left(x-pi\right)}{cos\left(\dfrac{pi}{2}-x\right)\cdot sin\left(x+pi\right)}\)
\(=\dfrac{-cotx\cdot sin\left(-x\right)\cdot\left(-cosx\right)}{sinx\cdot-sinx}\)
\(=\dfrac{cotx\cdot sinx\left(-1\right)\cdot cosx}{-sinx\cdot sinx}=\dfrac{\dfrac{cosx}{sinx}\cdot cosx}{sinx}=\dfrac{cos^2x}{sin^2x}=cot^2x\)
tính giá trị biểu thức a= (2021 - 1) nhân (2021 -2) nhân (2021- 3 nhân ........... nhân ( 2021 -n) và tích trên có đứng 2021 thừa số
\(A=\left(2021-1\right)\left(2021-2\right)\cdot\left(2021-3\right)\cdot...\cdot\left(2021-n\right)\)
Tích trên có đúng 2021 thừa số nên n=2021
=>\(A=\left(2021-1\right)\left(2021-2\right)\cdot\left(2021-3\right)\cdot...\cdot\left(2021-2021\right)\)
\(=2020\cdot2019\cdot2018\cdot...\cdot0\)
=0