a,Tính tổng:S=1+52+54+...+5200
b,So sánh 230+330+430 và 3.2410
Bài 1 :tìm x , biết :
(x-7)x+1 - (x-7)x+11 =0
Bài 2 :tìm x , biết :
a,|2x-3| > 5 c,|3x-1| ≤ 7 d,|3x-5| + |2x+3| = 7
Bài 3 :
a,tính tổng S = 1 + 52 + 54 + ....... + 5200.
b,so sánh 230 + 330 + 430 và 3.2410
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
Tính tổng S=1+52 +54+.....+5200
So sánh 230+330+430và 3.2410
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM
a: \(25S=25+5^4+...+5^{202}\)
=>24S=5^202-1
hay \(S=\dfrac{5^{202}-1}{24}\)
b:
4^30=2^30*2^30
=(2^3)^10*(2^2)^15>8^10*3^15=(8^10*3^10)*3^5>24^10*3
=>2^30+3^30+4^30>3*24^10
230+330+430 và 3.3210
So sánh
So sánh:
a) 430 và 3.2410
b) \(\dfrac{3}{1^2.2^2}\) + \(\dfrac{5}{2^2.3^2}\) + \(\dfrac{7}{3^2.4^2}\) +...+\(\dfrac{19}{9^2.10^2}\) và 1
a) \(3\cdot24^{10}=3\cdot6^{10}\cdot4^{10}=3\cdot3^{10}\cdot2^{10}\cdot2^{20}\)
\(=3^{11}\cdot2^{30}\)
\(4^{30}=2^{30}\cdot2^{30}=2^{30}\cdot4^{15}\)
Ta có \(4^{15}>3^{15}>3^{11}\) nên \(4^{15}>3^{11}\)
Khi đó \(4^{15}\cdot2^{30}>3^{11}\cdot2^{30}\) hay \(4^{30}>3\cdot24^{10}\)
b) \(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{19}{9^2\cdot10^2}\)
\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+...+\dfrac{19}{81\cdot100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
Vậy dãy trên nhỏ hơn 1
a/
\(4^{30}=\left(2^2\right)^{30}=2^{60}=2^{30}.2^{30}=\left(2^2\right)^{15}.2^{30}=4^{15}.2^{30}\)
\(3.24^{10}=3.3^{10}.\left(2^3\right)^{10}=3^{11}.2^{30}< 3^{15}.2^{30}\)
\(\Rightarrow4^{30}=4^{15}.2^{30}>3^{15}.2^{30}>3^{11}.2^{30}=3.24^{10}\)
b/
\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}=\)
\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}=\)
\(=1-\dfrac{1}{10^2}< 1\)
a) 4³⁰ = (2²)³⁰ = 2⁶⁰ = 2³⁰.2³⁰ = 1073741824.2³⁰
3.24¹⁰ = 3.(3.2³)¹⁰ = 3.3¹⁰.2³⁰ = 3¹¹.2³⁰ = 177147.2³⁰
Do 1073741824 > 177147
⇒ 1073741824.2³⁰ > 177147.2³⁰
Vậy 4³⁰ > 3.24¹⁰
b) 3/(1².2²) + 5/(2².3²) + ... + 19/(9².10²)
= 1/1² - 1/2² + 1/2² - 1/3² + ... + 1/9² - 1/10²
= 1 - 1/100
= 99/100
Mà 99/100 < 1
⇒ 3/(1².2²) + 5/(2².3²) + 7/(3².4²) + ... + 19/(9².10²) < 1
So sánh : 230+330+430 và 3.3210
Làm từng bước cảm ơn các bạn ! Tick cho 3 bạn có câu trả lời nhanh nhất!
Ta có: 430 = 230 . 230 = (23)10 . (22)15 > 810 . 315 > (810 . 310) . 35 > 2410 . 3
Vậy 230 + 330 + 430 > 3.2410
a,Tính tổng:S=1+52+54+...+5200
b,So sánh 230+330+430 và 3.2410
a) S=1+52+54+.....+5200
=>52S=25S=52+54+56+.....+5202
=>25S-S=(52+54+56+....+5202)-(1+52+54+......+5200)
=>24S=5202-1
=>S=\(\frac{5^{202}-1}{24}\)
b) Ta có: \(4^{30}=2^{30}.2^{30}=\left(2^3\right)^{10}.\left(2^2\right)^{15}=8^{10}.4^{15}>8^{10}.3^{15}>8^{10}.3^{11}=8^{10}.3^{10}.3=3.24^{10}\)
Vậy \(2^{30}+3^{30}+4^{30}>3.24^{10}\)
Cho : A = { 1/52 ;1/53 ;1/54 ;1/55 ; ............ ;1/100 }
Hãy so sánh A với chữ số 1
\(A=\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}
Cho A=1/51+1/52+1/53+1/54+......+1/99+1/100.hãy so sánh A với 1/2.
Mai mình phải nộp bài rồi.
to giup cau nhe
Vi tat ca cac phan so tren deu nho hon 1/2 ne tong do se nho hon 1/2
Neu cau cho la dung hay chon cau tra loi cua minh nhe
Ta thầy từ: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 mỗi số hạng đều lớn hơn 1/100 Mà tổng trên có (100-51)+1= 50 (số hạng)
Nên 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 + 1/100 > 1/100 x 50 = 50/100 = 1/2 Vậy: s > 1/2
LÀM NHƯ VẦY NÈ
TỪ SỐ ĐẦU DẾN SỐ CUỐI CÓ TẤT CẢ 50 PHÂN SỐ
1/51+ 1/52 + 1/53 + 1/54 + .... + 1/99 + 1/100 - 1/100 * 50 = 50/100
RÚT GỌN PHÂN SỐ TRÊN TA CÓ 1/2 TỔNG TRÊN TRỪ ĐC 1/2 CÓ NGHĨA LÀ NÓ LỚN HƠN
CHÚC BẠN HỌC TỐT NHA NGUYỄN BẢO LINH
So sánh :
1+52+54+...+540 với 542.2 : 23
Mình cần gấp các bạn giúp mình với :<
Đặt \(A=1+5^2+5^4+...+5^{40}\)
\(\Rightarrow25A=5^2+5^4+5^6+...+5^{42}\)
Lấy \(25A-A=\left(5^2+5^4+5^6+...+5^{42}\right)-\left(1+5^2+5^4+...+5^{40}\right)\)
\(\Rightarrow24A=5^{42}-1\)
\(\Rightarrow A=\dfrac{5^{42}-1}{24}\)
nguyễn thị hương giang, cúm ơn rất nhìu !!