cos2x + \(\frac{1}{cos^2x}\) = 2cosx + 1 - \(\frac{2}{cosx}\)
giải phương trình
1.\(sin^3x+2cosx-2+sin^2x=0\)
\(2.\frac{\sqrt{3}}{2}sin2x+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
3.\(2sin2x-cos2x=7sinx+2cosx-4\)
4.\(2cos2x-8cosx+7=\frac{1}{cosx}\)
5.\(cos^8x+sin^8x=2\left(cos^{10}x+sin^{10}x\right)+\frac{5}{4}cos2x\)
6.\(1+sinx+cos3x=cosx+sin2x+cos2x\)
7.\(1+sinx+cosx+sin2x+cos2x=0\)
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
3.
\(\Leftrightarrow4sinx.cosx-\left(1-2sin^2x\right)=7sinx+2cosx-4\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+2sin^2x-7sinx+3=0\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+\left(sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2cosx+sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\Leftrightarrow...\\2cosx+sinx=3\left(1\right)\end{matrix}\right.\)
Xét (1), do \(2^2+1^2< 3^2\) nên (1) vô nghiệm
giai pt:
a) \(\left(2cosx-1\right)\left(2sinx+cosx\right)=sin2x-sinx\)
b) \(\frac{sin2x}{cosx}+\frac{cos2x}{sinx}=tanx-cotx\)
c) \(\frac{1}{cos^2x}=\frac{2-sin^3x-cos^2x}{1-sin^3x}\)
a/
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)=2sinx.cosx-sinx\)
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)-sinx\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx-sinx\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx+cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)
\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)
\(\Leftrightarrow cosx=sin^2x-cos^2x\)
\(\Leftrightarrow cosx=1-2cos^2x\)
\(\Leftrightarrow2cos^2x+cosx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)
c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)
\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)
\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)
\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)
\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)
\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)
giải các pt
a) \(1-2cos2x-\sqrt{3}sinx+cosx=0\)
b) \(cos2x+cos^2x-sinx.cosx=8\left(cosx-sinx\right)\)
c) \(sin^2x+3sinx.cosx-4cos^2x=4\left(sinx-cosx\right)\)
d) \(\frac{cos^3x-sin^3x}{2cosx+3sinx}=cos2x\)
a/
\(\Leftrightarrow1-2\left(2cos^2x-1\right)-\sqrt{3}sinx+cosx=0\)
\(\Leftrightarrow3-4cos^2x+cosx-\sqrt{3}sinx=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(4cosx+3\right)-\sqrt{3}sinx=0\)
\(\Leftrightarrow2sin^2\frac{x}{2}\left(4cosx+3\right)-2\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}sin\frac{x}{2}=0\Rightarrow x=k2\pi\\sin\frac{x}{2}\left(4cosx+3\right)-\sqrt{3}cos\frac{x}{2}=0\left(1\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow sin\frac{x}{2}\left(8cos^2\frac{x}{2}-1\right)-\sqrt{3}cos\frac{x}{2}=0\)
- Với \(\left\{{}\begin{matrix}cos\frac{x}{2}=0\\sin\frac{x}{2}=-1\end{matrix}\right.\) \(\Rightarrow x=-\pi+k4\pi\) là 1 nghiệm
- Với \(cos\frac{x}{2}\ne0\) chia 2 vế cho \(cos^3\frac{x}{2}\)
\(tan\frac{x}{2}\left(8-1-tan^2\frac{x}{2}\right)-\sqrt{3}-\sqrt{3}tan^2\frac{x}{2}=0\)
\(\Leftrightarrow-tan^3\frac{x}{2}-\sqrt{3}tan^2\frac{x}{2}+7tan\frac{x}{2}-\sqrt{3}=0\)
Đặt \(tan\frac{x}{2}=t\)
\(\Rightarrow t^3+\sqrt{3}t^2-7t+\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\sqrt{3}\\t=-2-\sqrt{3}\\t=2-\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{x}{2}=\frac{\pi}{3}+k\pi\\\frac{x}{2}=-\frac{5\pi}{12}+k\pi\\\frac{x}{2}=\frac{\pi}{12}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow cos^2x-sin^2x+cos^2x-sinx.cosx=8\left(cosx-sinx\right)\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)+cosx\left(cosx-sinx\right)=8\left(cosx-sinx\right)\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(2cosx+sinx-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\left(1\right)\\2cosx+sinx=8\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x-\frac{\pi}{4}=k\pi\)
\(\Rightarrow x=\frac{\pi}{4}+k\pi\)
Xét (2), theo điều kiện có nghiệm của pt lượng giác bậc nhất, \(2^2+1^2< 8^2\Rightarrow\left(2\right)\) vô nghiệm
c/
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx\right)=4\left(sinx-cosx\right)\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\sinx+4cosx-4=0\left(2\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
Xét (2) \(\Leftrightarrow\frac{1}{\sqrt{17}}sinx+\frac{4}{\sqrt{17}}cosx=\frac{4}{\sqrt{17}}\)
Đặt \(\frac{4}{\sqrt{17}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow cosx.cosa+sinx.sina=cosa\)
\(\Leftrightarrow cos\left(x-a\right)=cosa\)
\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)
Chứng minh các đẳng thức sau:
a.\(\frac{1+sin^2x}{1-sin^{2^{ }}x}=1+2tan^2x\)
b.\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=1\)
c.\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}=2cosx\)
e.\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=2cosa\)
d.\(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
MỌI NGƯỜI GIÚP MÌNH VỚI .MÌNH CẢM ƠN RẤT NHIỀU
\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+\frac{sin^2x}{cos^2x}=1+tan^2x+tan^2x=1+2tan^2x\)
\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}-sina.cosa\)
\(=sin^2a+cos^2a+sina.cosa-sina.cosa=1\)
\(\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cosx.cos2x}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=\frac{cos^2a-sin^2a}{cosa+sina}+\frac{cos^2a-sin^2a}{cosa-sina}\)
\(=\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa+sina}+\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa-sina}=cosa-sina+cosa+sina=2cosa\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
1. cos3a . sin a - sin3a . cos a =\(\frac{\sin4a}{4}\)
2. \(\frac{\cos^2x-\sin^2x}{\cot^2x-tan^2x}=\frac{1}{4}\sin^22x\)
3. \(\frac{\sin2x}{1+\cos2x}=tanx\)
4. rút gọn ; \(A=\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)
Quên cách giải ptlg rồi nên lm câu 4 =.=
\(\cos3x=\cos\left(2x+x\right)=\cos2x.\cos x-\sin2x.\sin x\)
\(=\left(2\cos^2x-1\right)\cos x-2\sin^2x.\cos x\)
\(=2\cos^3x-\cos x-2\sin^2x.\cos x\)
\(\Rightarrow A=\frac{1+\cos x+2\cos^2x-1+2\cos^3x-\cos x-2\sin^2x.\cos x}{2\cos^2x-1+\cos x}\)
\(=\frac{2\cos^2x+2\cos^3x-2\sin^2x.\cos x}{2\cos^2x-1+\cos x}\)
\(=\frac{2\cos^2x+2\cos^3x-2\left(1-\cos^2x\right).\cos x}{2\cos^2x-1+\cos x}\)
\(=\frac{2\cos^2x+2\cos^3x-2\cos x+2\cos^3x}{2\cos^2x-1+\cos x}\)
\(=\frac{2\cos x\left(2\cos^2x+\cos x-1\right)}{2\cos^2x-1+\cos x}=2\cos x\)
Giúp mình với mn...
1)cos2x+cos22x+cos23x+cos24x=2
2) (1-tanx) (1+sin2x)=1+tanx
3) tan2x=sin3x.cosx
4) tanx +cot2x=2cot4x
5) sinx+sin2x+sin3x=cosx+cos2x+cos3x
6)sinx=√2 sin5x-cosx
7) 1/sin2x + 1/cos2x =2/sin4x
8) sinx+cosx=cos2x/1-sin2x
9)1+cos2x/cosx= sin2x/1-cos2x
10)sin3x+cos3x/2cosx-sinx=cos2x
giải các pt
a) \(cos\frac{4x}{3}=cos^2x\)
b) \(cos\frac{8x}{3}=cos^2\frac{2x}{3}\)
c) \(2cos^2\frac{3x}{5}+1=3cos\frac{4x}{5}\)
d) \(cos^2x+\frac{1}{cos^2x}+2=2cosx+\frac{2}{cosx}\)
a/
\(\Leftrightarrow cos\frac{4x}{3}=\frac{cos2x+1}{2}\)
Đặt \(\frac{2x}{3}=a\Rightarrow2x=3a\)
Pt trở thành:
\(cos2a=\frac{cos3a+1}{2}\)
\(\Leftrightarrow2\left(2cos^2a-1\right)=4cos^3a-3cosa+1\)
\(\Leftrightarrow4cos^3a-4cos^2a-3cosa+3=0\)
\(\Leftrightarrow\left(cosa-1\right)\left(4cos^2a-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosa=1\\cosa=\frac{\sqrt{3}}{2}\\cosa=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(\frac{2x}{3}\right)=1\\cos\left(\frac{2x}{3}\right)=\frac{\sqrt{3}}{2}\\cos\left(\frac{2x}{3}\right)=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2x}{3}=k2\pi\\\frac{2x}{3}=\pm\frac{\pi}{6}+k2\pi\\\frac{2x}{3}=\pm\frac{7\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\)
b/
Đặt \(\frac{2x}{3}=a\)
\(\Rightarrow cos4a=cos^2a\)
\(\Leftrightarrow2cos^22a-1=\frac{1+cos2a}{2}\)
\(\Leftrightarrow4cos^22a-cos2a-3=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2a=1\\cos2a=-\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{4x}{3}\right)=1\\cos\left(\frac{4x}{3}\right)=-\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{4x}{3}=k2\pi\\\frac{4x}{3}=\pm arccos\left(-\frac{3}{4}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k3\pi}{2}\\x=\pm\frac{3}{4}arccos\left(-\frac{3}{4}\right)+\frac{k3\pi}{2}\end{matrix}\right.\)
c/
\(\Leftrightarrow cos\frac{6x}{5}+2=3cos\frac{4x}{5}\)
Đặt \(\frac{2x}{5}=a\)
\(\Rightarrow cos3a+2=3cos2a\)
\(\Leftrightarrow4cos^3a-3cosa+2=6cos^2a-3\)
\(\Leftrightarrow4cos^3a-6cos^2a-3cosa+5=0\)
\(\Leftrightarrow\left(cosa-1\right)\left(4cos^2a-2cosa-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosa=1\\cosa=\frac{1+\sqrt{21}}{4}>1\left(l\right)\\cosa=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{2x}{5}\right)=1\\cos\left(\frac{2x}{5}\right)=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2x}{5}=k2\pi\\\frac{2x}{5}=\pm arccos\left(\frac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k5\pi\\x=\pm\frac{5}{2}arccos\left(\frac{1-\sqrt{21}}{4}\right)+k5\pi\end{matrix}\right.\)
Tìm tham số m để hàm số sau xác định trên R
1/ \(y=\sqrt{cos^2x+cosx-2m+1}\)
2/ \(y=\sqrt{cos2x-2cosx+m}\)
3/ \(y=\sqrt{sin^4x+cos^4x-sin2x-m}\)
1/ Để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) + cos(x ) - 2m + 1 > 0 Để giải phương trình này, ta sử dụng một số phép biến đổi: cos^2(x) + cos(x) - 2m + 1 = (cos(x) + 2)(cos(x) - m + 1) Điều kiện để biểu thức trên dương là: cos(x) + 2 > 0 và cos(x) - m + 1 > 0 Với cos(x) + 2 > 0, ta có -2 < cos( x) < 0 Với cos(x) - m + 1 > 0, ta có m - 1 < cos(x) < 1 Tổng Hàm, để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, tham số m phải đáp ứng điều kiện -2 < cos(x) < 0 và m - 1 < cos(x) < 1. 2/ Để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) - 2cos(x) + m > 0 Đây là một phương trình bậc hai theo cos(x). Để giải phương trình này, ta sử dụng công thức delta: Δ = b^2 - 4ac Ở đây, a = 1, b = -2, c = m. Ta có: Δ = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) Để phương trình có nghiệm thì Δ > 0. Tức là 1 - m > 0 hay m < 1. Tổng quát, để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, tham số m phải đáp ứng m < 1. 3/ Để hàm số y = √sin^ 4 (x) + cos^4(x) - sin^2(x) - m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: sin^4(x) + cos^4(x) - sin ^2(x) - m > 0 Đây cũng là một phương trình bậc hai theo sin(x). Ta sử dụng công thức delta as on, with a = 1, b = -1, c = -m. Δ = (-1)^2 - 4(1)(-m) = 1 + 4m = 4m + 1 Để phương trình có nghiệm thì Δ > 0. Tức là m > -1/4. Tổng quát, để hàm số y = √sin^4(x) + cos^4(x) - sin^2(x) - m xác định trên R, tham số m phải thỏa mãn m > -1/4.
Giải các phương trình sau:
a, \(\sqrt{2}\) sin \(\left(2x+\frac{\pi}{4}\right)\)=3sinx+cosx+2
b, 1+sinx+cosx+sin2x+cos2x=0
c, (2cosx-1)(2sinx+cosx)=sin2x-sinx
d, cos3x+cos2x-cosx-1=0
a.
\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)
\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0=0\)
\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left(sinx+cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=-1\\2cosx-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\cosx=\frac{3}{2}\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow1+sinx+cosx+2sinx.cosx+2cos^2x-1=0\)
\(\Leftrightarrow sinx\left(2cosx+1\right)+cosx\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)=2sinx.cosx-sinx\)
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)-sinx\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx-sinx\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx+cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow...\)