Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Đức
Xem chi tiết
Chau Nguyen
5 tháng 6 2016 lúc 20:43

\(sin\left(2x+\frac{\pi}{3}\right)-\frac{\sqrt{3}}{2}\cos2x=-1\)

\(\sin2x\cos\frac{\pi}{3}+\cos2xsin\frac{\pi}{3}-sin\frac{\pi}{3}\cos2x=-1\)

\(\sin2x\cos\frac{\pi}{3}=-1\)

Nguyễn Sinh Hùng
Xem chi tiết
nguyễn thế minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 7 2022 lúc 22:04

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}\cdot\cos2x+\dfrac{1}{2}\cdot\sin2x+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)

\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)

\(\Leftrightarrow2\cdot\dfrac{\sin\left(2x+\dfrac{\Pi}{3}+2x+\dfrac{\Pi}{6}\right)}{2}\cdot\dfrac{\cos\left(2x+\dfrac{\Pi}{3}-2x-\dfrac{\Pi}{6}\right)}{2}=\sqrt{2}\)

\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)\cdot\cos\left(\dfrac{\Pi}{6}\right)=2\sqrt{2}\)

\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)=\dfrac{4\sqrt{6}}{3}\)

hay \(x\in\varnothing\)

Kuramajiva
Xem chi tiết
Hồng Phúc
8 tháng 2 2022 lúc 14:46

a, ĐK: \(x\ne\dfrac{5\pi}{6}+k2\pi;x\ne\dfrac{\pi}{6}+k2\pi\)

\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)

\(\Leftrightarrow2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)=1-2sinx\)

\(\Leftrightarrow-cos\left(3x-\dfrac{\pi}{2}\right)+\sqrt{3}cos^3x.\dfrac{cos^2x-3sin^2x}{cos^2x}=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(cos^2x-3sin^2x\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(4cos^2x-3\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cos3x=-2sinx\)

\(\Leftrightarrow\dfrac{1}{2}sin3x-\dfrac{\sqrt{3}}{2}cos3x-sinx=0\)

\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{3}\right)-sinx=0\)

\(\Leftrightarrow2cos\left(2x-\dfrac{\pi}{6}\right)sin\left(x-\dfrac{\pi}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{6}=k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được:

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

lu nguyễn
Xem chi tiết
lu nguyễn
Xem chi tiết
Nyusu TegoKato
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2022 lúc 9:14

a: \(A=\sqrt{3}\left(\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx\right)+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)

\(=\dfrac{\sqrt{3}}{2}sinx-\dfrac{3}{2}cosx+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)

\(=\sqrt{3}sinx-cosx\)

c: \(=2\left[\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right]+4sinx+1\)

\(=\sqrt{3}sin2x-cos2x+4sinx+1\)

d: \(D=\sqrt{3}cos2x+sin2x+2\cdot\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)\)

\(=\sqrt{3}\cdot cos2x+sin2x+\sqrt{3}\cdot sin2x-cos2x\)

\(=cos2x\left(\sqrt{3}-1\right)+sin2x\left(1+\sqrt{3}\right)\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:50

a/

Đặt \(x+\frac{\pi}{3}=a\Rightarrow x=a-\frac{\pi}{3}\)

Pt trở thành:

\(cos^2a+4cos\left(\frac{\pi}{6}-a+\frac{\pi}{3}\right)=4\)

\(\Leftrightarrow cos^2a+4cos\left(\frac{\pi}{2}-a\right)-4=0\)

\(\Leftrightarrow cos^2a+4sina-4=0\)

\(\Leftrightarrow1-sin^2a+4sina-4=0\)

\(\Leftrightarrow-sin^2a+4sina-3=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{3}\right)=1\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{6}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:54

b/

Đặt \(x+\frac{\pi}{6}=a\Rightarrow x=a-\frac{\pi}{6}\)

Pt trở thành:

\(5cos2a=4sin\left(\frac{5\pi}{6}-a+\frac{\pi}{6}\right)-9\)

\(\Leftrightarrow5cos2x=4sin\left(\pi-a\right)-9\)

\(\Leftrightarrow5\left(1-2sin^2a\right)=4sina-9\)

\(\Leftrightarrow10sin^2a+4sina-14=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=-\frac{7}{5}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=1\)

\(\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 20:00

c/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=...\)

Đừng gọi tôi là Jung Hae...
Xem chi tiết
Hồng Phúc
17 tháng 9 2021 lúc 22:28

a, \(y=2sin^2x-cos2x=1-2cos2x\)

Vì \(cos2x\in\left[-1;1\right]\Rightarrow y=2sin^2x-cos2x\in\left[-1;3\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=-1\\y_{max}=3\end{matrix}\right.\)