1/2x-4 = 2/28
a) 4/7.|x|+1/28=12/28
b) (2)^2x-1=8
a) 4/7.|x| + 1/28 = 12/28
4/7.|x| = 11/28
|x| = 11/16
=> x = 11/16
b) (2)2x-1 = 8 = 23
=> 2x + 1 = 3
2x = 2
x = 1
c) \(\dfrac{y^4-1}{y^3+y^2+y+1}=\)
d)\(\dfrac{2x^2-9x+7}{-2x^2-x+28}=\)
c) \(\dfrac{y^4-1}{y^3+y^2+y+1}\)
\(=\dfrac{\left(y^2+1\right)\left(y^2-1\right)}{y^2\left(y+1\right)+\left(y+1\right)}\)
\(=\dfrac{\left(y^2+1\right)\left(y+1\right)\left(y-1\right)}{\left(y+1\right)\left(y^2+1\right)}\)
\(=y-1\)
d) \(\dfrac{2x^2-9x+7}{-2x^2-x+28}\)
\(=\dfrac{2x^2-2x-7x+7}{-\left(2x^2+8x-7x-28\right)}\)
\(=\dfrac{2x\left(x-1\right)-7\left(x-1\right)}{-\left(2x-7\right)\left(x+4\right)}\)
\(=-\dfrac{\left(2x-7\right)\left(x-1\right)}{\left(2x-7\right)\left(x+4\right)}\)
\(=\dfrac{1-x}{x+4}\)
Tìm x biêts
a. ( x+2)(x^2-2x+4) = 15
b. ( x+3)^3 - x(3x+1)^2 + (2x +1)(4x^2-2x+1) = 28
Bài 1: Không làm tính chia, hãy tính số dư trong phép chia
\(a,\left(x^4-6x^2+2x+28\right):\left(x-1\right)\)
\(b,\left(x^4-6x^2+2x+28\right):\left(x-2\right)\)
a)\(x^4-6x^2+2x+28\)
\(=\left(x^4-x^3\right)+\left(x^3-x^2\right)-\left(5x^2-5x\right)-\left(3x-3\right)+25\)
\(=\left(x-1\right)\left(x^3+x^2-5x-3\right)+25\)
=> số dư là 25
b) Cách làm tương tự câu a nhé
Tìm x, biết
a) 7x^2 – 28 = 0
b)2 phần 3x(x^2-4)=0
c) 2x^2 + 3x –5 = 0
d) 2x(3x – 5) – 5 + 3x = 0
e) (2x – 1)^2 – (2x + 5)(2x – 5) = 18
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Tìm x, biết
a) 7x^2 – 28 = 0
b)2 phần 3x(x^2-4)=0
c) 2x^2 + 3x –5 = 0
d) 2x(3x – 5) – 5 + 3x = 0
e) (2x – 1)^2 – (2x + 5)(2x – 5) = 18
a) \(7x^2=28\Leftrightarrow x^2=7\Leftrightarrow x=\sqrt{7}\)
c) \(\left(x-1\right)\left(x+\dfrac{5}{2}\right)=0\Leftrightarrow x\in\left\{1;\dfrac{-5}{2}\right\}\)
Giải các bất phương trình sau:
\(a,\left(x+1\right)\left(x+4\right)< 5\sqrt{x^2+5x+28}\)
\(b,4\sqrt{x}+\dfrac{2}{\sqrt{x}}< 2x+\dfrac{1}{2x}+2\)
a, ĐKXĐ : \(D=R\)
BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)
Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)
BPTTT : \(5\sqrt{a+24}>a\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)
\(\Leftrightarrow-24\le a< 40\)
- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)
\(\Leftrightarrow-9< x< 4\)
Vậy ....
b, ĐKXĐ : \(x>0\)
BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)
- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)
\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)
BPTTT : \(2a\le a^2\)
\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)
\(\Leftrightarrow a\ge2\)
\(\Leftrightarrow a^2\ge4\)
- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)
\(\Leftrightarrow4x^2-12x+1\ge0\)
\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)
Vậy ...
Tìm x biết a) x(x-25)=0 b)2x(x-4)-x(2x-1)=-28 c)x^2 -5x=0 d)(x-2)^2-(x+1)(x+3)=-7 e)(3x+5).(4-3x)=0 f)x^2-1/4=0
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
a)(2x-1)^2+(x+3)^2-5(x+7)(x-7)=0
b)(x+2)(x^2-2x+4)-x(x^2+2)=15
c)(x+3)^3-x(3x+1)^2+(2x-1)(4x^2-2x+1)=28
d)(x^2-1)^3-(x^4+x^2+1)(x^2-1)=0
Sorry mình nhầm câu a
a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0
b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28
d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
Giải:
a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0
\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5(x2 - 49) = 0
\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5x2 + 245 = 0
\(\Leftrightarrow\) 2x + 255 = 0
\(\Leftrightarrow\) 2x = - 255
\(\Leftrightarrow\) x = - 255 : 2
\(\Leftrightarrow\) x = \(-\frac{255}{2}\)
Vậy x = \(-\frac{255}{2}\)
b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
\(\Leftrightarrow\) x3 + 8 - x3 - 2x = 15
\(\Leftrightarrow\) 8 - 2x = 15
\(\Leftrightarrow\) 2x = 8 - 1
\(\Leftrightarrow\) 2x = - 7
\(\Leftrightarrow\) x = - 7 : 2
\(\Leftrightarrow\) x = \(-\frac{7}{2}\)
Vậy x = \(-\frac{7}{2}\)
c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28
\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - x(9x2 + 6x + 1) + 8x3 - 1 = 28
\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 - 1 = 28
\(\Leftrightarrow\) 26x + 26 = 28
\(\Leftrightarrow\) 26x = 28 - 26
\(\Leftrightarrow\) 26x = 2
\(\Leftrightarrow\) x = 2 : 26
\(\Leftrightarrow\) x = \(\frac{1}{13}\)
Vậy x = \(\frac{1}{13}\)
d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
\(\Leftrightarrow\) x6 - 2x2 + 1 - (x6 - 1) = 0
\(\Leftrightarrow\) x6 - 2x2 + 1 - x6 + 1 = 0
\(\Leftrightarrow\) -2x2 + 2 = 0
\(\Leftrightarrow\) -2x2 = - 2
\(\Leftrightarrow\) x2 = - 2 : (- 2)
\(\Leftrightarrow\) x2 = 1
\(\Leftrightarrow\) x = 1 hoặc x = - 1
Vậy x \(\in\) {1; - 1}
cơ may sao nay gặp được Dân Chơi Đất Bắc luôn nè ::)))