cho a,b,c > 0, abc=1. C/m 1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3) <= 1/2
a,b,c>0.CMR a^2/(2a+b)(2a+c)+b^2/(2b+c)(2b+a)+c^2/(2c+a)(2c+b) >1/3
Cho a,b,c > 0:abc=1
Cmr: \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
Ta có:
\(a^2+b^2\ge2ab\)
\(b^2+1\ge2ab\)
\(\Rightarrow a^2+2ab^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\dfrac{1}{a^2+2b^2+3}< \dfrac{1}{2.\left(ab+b+1\right)}\)
Tương tự:
\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}.\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\right)\)
Mặt khác:
\(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}=\dfrac{1}{ab+b+1}+\dfrac{ab}{ab^2c+abc+ab}+\dfrac{b}{bca+ab+b}=1\)
\(\Rightarrow\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
\(\Leftrightarrow a=b=c=1\)
\(\Rightarrow\) Đpcm.
Áp dụng BĐT AM - GM, ta có:
\(a^2+2b^2+3\)
\(=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)
\(\ge2ab+2b+2\)
Tương tự, ta có: \(b^2+2c^2+3\ge2bc+2c+2\) và \(c^2+2a^2+3\ge2ac+2a+2\)
\(VT=\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\)
\(\le\dfrac{1}{2ab+2b+2}+\dfrac{1}{2bc+2c+2}+\dfrac{1}{2ac+2a+2}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ac+a+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{abc}{bc+c+abc}+\dfrac{abc}{ac+a^2bc+abc}\right)\) (Thay abc = 1)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{b+1+ab}+\dfrac{b}{1+ab+b}\right)\)
\(=\dfrac{1}{2}\times\dfrac{1+ab+b}{ab+b+1}\)
\(=\dfrac{1}{2}=VP\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c = 1
a,b,c >0 và abc=1.Tìm Max của:
\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\)
tách như nầy nè
\(\dfrac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\dfrac{1}{2ab+2b+2}=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}\right)\)
Cho a,b,c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=> bc+ac+ab=0
ta có
\(bc+ac=-ab\)
<=> \(\left(bc+ac\right)^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)
tương tự
\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)
\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)
thay vào E ta đc
\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)
=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)
1. CMR: Nếu a,b,c là độ dài 3 cạnh tam giác thì:
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
2. PTĐT thành nhân tử
a) \(a^6+a^4+a^2b^2+b^4+b^6\)
b) \(a^3+3ab+b^3-1\)
c) \(a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)-c^2a^2\left(c-a\right)\)
d) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
2.
\(a,Sửa:a^6+a^4+a^2b^2+b^4-b^6\\ =\left(a^6-b^6\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2+b^2\right)^2-a^2b^2\right]\left(a^2-b^2+1\right)\\ =\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(a^2-b^2+1\right)\\ b,=\left(a^3+b^3\right)-1+3ab\\ =\left(a+b\right)^3-3ab\left(a+b\right)-1+3ab\\ =\left(a+b-1\right)\left(a^2+2ab+b^2+a+b+1\right)-3ab\left(a+b-1\right)\\ =\left(a+b-1\right)\left(a^2+b^2+1+a+b-ab\right)\)
\(c,=a^2b^2\left(b-a\right)+b^2c^2\left(c-a+a-b\right)-c^2a^2\left(c-a\right)\\ =-a^2b^2\left(a-b\right)+b^2c^2\left(a-b\right)+b^2c^2\left(c-a\right)-c^2a^2\left(c-a\right)\\ =\left(a-b\right)\left(b^2c^2-a^2b^2\right)+\left(c-a\right)\left(b^2c^2-c^2a^2\right)\\ =b^2\left(a-b\right)\left(c-a\right)\left(c+a\right)+c^2\left(c-a\right)\left(b-a\right)\left(b+a\right)\\ =\left(a-b\right)\left(c-a\right)\left[b^2\left(c+a\right)-c^2\left(b+a\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b^2c+ab^2-bc^2-ac^2\right)\\ =\left(a-b\right)\left(c-a\right)\left[bc\left(b-c\right)+a\left(b-c\right)\left(b+c\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(bc+ab+ac\right)\)
a,b,c >0 và abc=1
Chứng minh: a^3+b^3+c^3>=a^2+b^2+c^2
a,b,c>0 và a^2+b^2+c^2=3
chứng minh 1/(2+a^2b) + 1/(2+b^2c) + 1/(2+c^2a) >=1
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
cho a,b,c >0, thỏa mãn abc=1. Chứng minh rằng \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
cho a, b, c > 0 và abc=1.
Chứng minh rằng: \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
Cho a,b,c>0 t/m \(a^2+b^2+c^2=3\). Tìm max
P\(P=\dfrac{a}{a^2+2b+3}+\dfrac{b}{b^2+2c+3}+\dfrac{c}{c^2+2a+3_{ }}\le\dfrac{1}{2}\)
Ta có: \(P\le\dfrac{a}{2a+2b+2}+\dfrac{b}{2b+2c+2}+\dfrac{c}{2c+2a+2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1}+\dfrac{c}{c+a+1}\le1\)
\(\Rightarrow\dfrac{a}{a+b+1}-1+\dfrac{b}{b+c+1}-1+\dfrac{c}{c+a+1}-1\le-2\)
\(\Leftrightarrow\dfrac{b+1}{a+b+1}+\dfrac{c+1}{b+c+1}+\dfrac{a+1}{c+a+1}\ge2\)
Thật vậy, ta có:
\(VT=\dfrac{\left(a+1\right)^2}{\left(a+1\right)\left(a+c+1\right)}+\dfrac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\dfrac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}\)
\(VT\ge\dfrac{\left(a+b+c+3\right)^2}{ab+bc+ca+3\left(a+b+c\right)+6}=\dfrac{2\left(ab+bc+ca\right)+6\left(a+b+c\right)+12}{ab+bc+ca+3\left(a+b+c\right)+6}=2\)
Dấu "=" xảy ra khi \(a=b=c=1\)