Cho a,b,c là các số dương thỏa mãn a+b+c=3. CMR : a^2b + b^2c + c^2a >= 9a^2b^2c^2/(1+2a^2b^2c^2
a,b,c>0: a+b+c=3. Chứng minh:
\(a^2b+b^2c+c^2a>=\frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
CMR nếu a, b,c là độ dài 3 cạnh của một tam giác thì:
a) 4a^2 -(a^2+ b^2 +c^2) >0
b)2a^2b^2 + 2b^2c^2 +2a^2c^2 - a^4 -b^4 - c^4>0
Cho 0<a,b,c<1.CMR:
2a^3+2b^3+2c^3<3+a^2b+b^2c+c^2a
a,b,c>0 cmr
a/(b+2c)+b/(c+2a)+c/(a+2b)>=b/(b+2a)+c/(c+2b)+a/(a+2c)
Cho \(0\le a,b,c\le1\). CMR
\(2a^3+2b^3+2c^3\le3+a^2b+b^2c+c^2a^2\)
Cho a,b,c>0 CMR
\(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho a, b, c là độ dài 3 cạnh tam giác. CMR:\(a^2b+b^2c+c^2a+a^2c+c^2b+b^2a-a^3-b^3-c^3>0\)
Cho a, b,c : abc = 1. Chứng minh:
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}+\dfrac{b^2c^2}{2b^2+c^2+3b^2c^2}+\dfrac{c^2a^2}{2c^2+a^2+3a^2c^2}\le\dfrac{1}{2}\)