Giải pt
\(x^3-7x^2=3x^2-12x\)
giải pt : \(3\sqrt{3x-2}+6\sqrt{x-1}=7x-10+4\sqrt{3x^2-5x+2}\)
ĐK: \(x\ge1\)
Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)
\(pt\Leftrightarrow3t=t^2-4\)
\(\Leftrightarrow t^2-3t-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)
\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)
\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)
\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)
\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
Giải phương trình: \(7x^2-12x+8=2x^2\sqrt[3]{x\left(1+3x-3x^2\right)}\)
Giúp e vs ạ Giải bất pt: a) 2x - x(3x + 1) < 15 - 3x(x + 2) b) 4(x - 3)² - (2x - 1)² ≥ 12x
a: =>2x-3x^2-x<15-3x^2-6x
=>x<-6x+15
=>7x<15
=>x<15/7
b: =>4x^2-24x+36-4x^2+4x-1>=12x
=>-20x+35>=12x
=>-32x>=-35
=>x<=35/32
\(a,2x-x\left(3x+1\right)< 15-3x\left(x+2\right)\\ \Leftrightarrow2x-3x^2-x< 15-3x^2-6x\\ \Leftrightarrow3x^2-3x^2+2x+6x-x< 15\\ \Leftrightarrow7x< 15\\ \Leftrightarrow x< \dfrac{15}{7}\)
Vậy S={-∞; 15/7}
\(b,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12x\\ \Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x\ge0\\ \Leftrightarrow4x^2-4x^2-24x+4x-12x\ge-36+1\\ \Leftrightarrow-32x\ge-35\\ \Leftrightarrow x\le\dfrac{35}{32}\)
Vậy S={-∞; 35/32]
Giai PT:
a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)
b,\(\sqrt{3x^2+12x+16}+\sqrt{y^2+4x^2+13}=5\)
c.\(\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\)
Giải pt: x^6+3x^5+6x^4+7x^3+6x^2+3x+1=0
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
Giải pt
\(\sqrt[3]{x^2+3x+3}+\sqrt[3]{2x^2+3x+2}=6x^2+12x+8\)
Đặt a=…b=…; tìm các hệ thức liên hệ vế trái vế phải
Chú ý: đ. Kiện, h.đ.thức, vi et...
Rút, thế....v.v...
đặt a=\(\sqrt[3]{x^2+3x+3}\) ; b=\(\sqrt[3]{2x^2+3x+2}\) a,b lớn hơn 0
\(\Rightarrow2a^3+2b^3-2=6x^2+12x+8\)
\(\Rightarrow a+b=2a^3+2b^3-2\)
\(\Rightarrow\left(a+b\right)\left(2a^2-2ab-2b^2\right)=2\)
vi a b duong nen ve con lai cung duong nên thuoc uoc 2 là 1 2
the vo 2 làn la ra a=1;b=1
nên x=-2
Giải pt
\(\sqrt[3]{x^2+3x+3}+\sqrt[3]{2x^2+3x+2}=6x^2+12x+8\)
\(\Leftrightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}=6x^2+12x+8\)
\(\Rightarrow\sqrt[3]{\left(2x^2+3x+2\right)}+\sqrt[3]{\left(x^2+3x+3\right)}-6x^2-12x-8=0\)
=>x=-1
giải pt :
a,\(9x^2-6x-5=\sqrt{3x+5}\)
b, \(9x^2+12x-2=\sqrt{3x+8}\)
c, \(x^2-4x-3=\sqrt{x+5}\)
d,\(x^2-6x-2=\sqrt{x+8}\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)
Đặt \(\sqrt{3x+5}=t\ge0\)
\(\Rightarrow9x^2-3x-t^2-t=0\)
\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
ĐKXĐ: \(x\ge-5\)
\(x^2-3x+2-x-5-\sqrt{x+5}=0\)
Đặt \(\sqrt{x+5}=t\ge0\)
\(\Rightarrow-t^2-t+x^2-3x+2=0\)
\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-\dfrac{8}{3}\)
\(\left(3x+2\right)^2-6-\sqrt{3x+8}=0\)
Đặt \(\sqrt{3x+8}=t\ge0\Rightarrow3x+2=t^2-6\)
\(\left(t^2-6\right)^2-6-t=0\)
\(\Leftrightarrow t^4-12t^2-t+30=0\)
\(\Leftrightarrow\left(t^2+t-5\right)\left(t^2-t-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+8}=3\\\sqrt{3x+8}=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)