tính \(\lim\limits\dfrac{-\sin2n}{\left(1,2\right)^n}\)
Cho dãy (Un) thoả mãn: \(\left\{{}\begin{matrix}U_1\in\left(0;1\right)\\U_{n+1}=U_n-U_n^2\end{matrix}\right.\) với \(n\ge1\)
Tính \(\lim\limits\left(U_n\right)\), \(\lim\limits\left(nU_n\right)\) và \(\lim\limits\dfrac{n\left(nU_n-2\right)}{\ln n}\)
cho dãy số(un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\sqrt{\dfrac{n+1}{n}}\left(u_n+3\right)-3\end{matrix}\right.\) ,n=1,2,...Tìm công thức tổng quát của dãy số (un) và tính \(\lim\limits\dfrac{u_n}{\sqrt{n}}\) .
\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)
\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)
\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)
....
\(\Rightarrow u_n=5\sqrt{n}-3\)
\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)
tính giới hạn
1.\(\lim\limits\left(n^3+4n^2-1\right)\)
2.\(lim\dfrac{\left(n+1\right)\sqrt{n^2-n+1}}{3n^2+n}\)
3.\(lim\dfrac{1+2+....+n}{2n^2}\)
4.\(lim\dfrac{3^n-4.2^{n-1}-10}{7.2^n+4^n}\)
1.
\(\lim (n^3+4n^2-1)=\infty\) khi $n\to \infty$
2.
\(\lim\limits_{n\to -\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to -\infty}\frac{-\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to -\infty}\frac{-(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{-1}{3}\)
\(\lim\limits_{n\to +\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to +\infty}\frac{\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to +\infty}\frac{(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{1}{3}\)
3.
\(\lim \frac{1+2+...+n}{2n^2}=\lim \frac{n(n+1)}{4n^2}=\lim \frac{n^2+n}{4n^2}\\ =\lim (\frac{1}{4}+\frac{1}{4n})=\frac{1}{4}\)
4.
\(\lim \frac{3^n-4.2^{n-1}-10}{7.2^n+4^n}=\lim \frac{(\frac{3}{4})^n-(\frac{2}{4})^{n-1}-\frac{10}{4^n}}{7(\frac{2}{4})^n+1}\\ =\lim \frac{(\frac{3}{4})^n-(\frac{1}{2})^{n-1}-\frac{10}{4^n}}{7(\frac{1}{2})^n+1}\\ =\frac{0-0-0}{7.0+1}=0\)
Tính \(lim\dfrac{\prod\limits^n_{k=1}\left(2k-1\right)}{\prod\limits^n_{k=1}\left(2k\right)}\)
Bạn tham khảo cách làm nha
https://diendantoanhoc.org/topic/106253-lim-nto-inftyprod-k1nfrac2k-12k/
Tính các giới hạn sau (\(n\rightarrow+\infty\) )
a) \(\lim\limits\dfrac{\left(-3\right)^n+2.5^n}{1-5^n}\)
b) \(\lim\limits\dfrac{1+2+3+....+n}{n^2+n+1}\)
c) \(\lim\limits\left(\sqrt{n^2+2n+1}-\sqrt{n^2+n-1}\right)\)
Tính các giới hạn sau :
a) \(\lim\limits\left(n^2+2n-5\right)\)
b) \(\lim\limits\left(-n^3-3n^2-2\right)\)
c) \(\lim\limits\left[4^n+\left(-2\right)^n\right]\)
d) \(\lim\limits n\left(\sqrt{n^2-1}-\sqrt{n^2+2}\right)\)
Tính các giới hạn sau :
a) \(\lim\limits\left(n^3+2n^2-n+1\right)\)
b) \(\lim\limits\left(-n^2+5n-2\right)\)
c) \(\lim\limits\left(\sqrt{n^2-n}-n\right)\)
d) \(\lim\limits\left(\sqrt{n^2-n}+n\right)\)
a) lim (n3 + 2n2 – n + 1) = lim n3 (1 + ) = +∞
b) lim (-n2 + 5n – 2) = lim n2 ( -1 + ) = -∞
c) lim ( - n) = lim
= lim = lim
= lim
=
.
d) lim ( + n) = lim (
+ n) = lim n (
+ 1) = +∞.
Cho hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\). Biết \(\lim\limits u_n=3;\lim\limits v_n=+\infty\). Tính các giới hạn :
a) \(\lim\limits\dfrac{3u_n-1}{u_n+1}\)
b) \(\lim\limits\dfrac{v_n+2}{v^2_n-1}\)
Cho dãy (un)
\(\left\{{}\begin{matrix}u_1=2022\\u^2_n+2021u_n-2023u_{n+1}+1\forall n\ge1\end{matrix}\right.\)
Tính \(\lim\limits\left(\dfrac{1}{u_1+2022}+...+\dfrac{1}{u_n+2022}\right)\)
Đề chỗ này có vấn đề:
\(u_n^2+2021u_n-2023u_{n+1}+1\)
Thiếu dấu "="