Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quyên Đỗ Trần Tâm
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 11:05

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)

ng.nkat ank
29 tháng 11 2021 lúc 11:10

B = 31 + 32 + 33 + .... + 399 + 3100

3B = 3(31 + 32 + 33 + ..... + 399 + 3100)

3B = 32 + 33 + 34 +...... + 3100 + 3101

3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)

2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)

2B = 0 + 0 + 0 + ..... +0 + 3101 - 1

2B = 3101 - 1

B = (3101 - 1)  : 2

Xem chi tiết

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

Genj Kevin
19 tháng 4 2021 lúc 21:01

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

⇔A<1102

Genj Kevin
19 tháng 4 2021 lúc 21:02

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

⇔A^2< 1/101

Xem chi tiết

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

Cô Bé Mùa Đông
Xem chi tiết
kodo sinichi
6 tháng 1 2023 lúc 15:46

ta có :

`1^3` \(⋮\) `1`

\(2^3⋮2\)

\(3^3⋮3\)

.................

\(100^3⋮100\)

`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)

vậy `A` \(⋮\)`B`

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2024 lúc 19:38

\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)

=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)

=>yz+2xz+3xy=0

=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)

\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)

=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)

=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)

=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)

=>A+xy+2/3xz+1/3yz=1

=>A=1

Mai Hồng Phương
Xem chi tiết
soyeon_Tiểu bàng giải
22 tháng 4 2016 lúc 20:20

Tinh 2A, roi lay 2A-A se chung to dc

Tam giác
Xem chi tiết
Nguyễn Thế Bảo
22 tháng 4 2016 lúc 19:03

Bạn xem lời giải của mình nhé:

Giải:

A luôn > 0 (vì các số hạng trong tổng A đều lớn hơn 0)(1)

 \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\\ 2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\\ 2A-A=1-\frac{1}{2^{100}}< 1\)

\(A< 1\)(2)

Từ (1) và (2) \(\Rightarrow0< A< 1\left(đpcm\right)\)

Chúc bạn học tốt!hihi

 

Nguyễn Thị Hương
22 tháng 4 2016 lúc 18:57

6

Tam giác
22 tháng 4 2016 lúc 19:04

Làm rõ ra đi

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:39

a)

\(\begin{array}{l}C_4^0 + 2C_4^1 + {2^2}C_4^2 + {2^3}C_4^3 + {2^4}C_4^4\\ = {1^4}.C_4^0 + {1^3}.2C_4^1 + {1^2}{.2^2}C_4^2 + {1.2^3}C_4^3 + {2^4}C_4^4\\ = {\left( {1 + 2} \right)^4} = {3^4}\end{array}\)

\( = 81\) (đpcm)

b)

\(\begin{array}{l}C_4^0 - 2C_4^1 + {2^2}C_4^2 - {2^3}C_4^3 + {2^4}C_4^4\\ = {1^4}.C_4^0 - {1^3}.2C_4^1 + {1^2}{.2^2}C_4^2 - {1.2^3}C_4^3 + {2^4}C_4^4\\ = {\left( {1 - 2} \right)^4} = {\left( { - 1} \right)^4}\end{array}\)

\( = 1\) (đpcm)

Chihiro
Xem chi tiết