Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
JOKER_Tokyo ghoul
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Phạm Phương Anh
Xem chi tiết
Akai Haruma
26 tháng 1 2021 lúc 13:14

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

123445566
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 6 2020 lúc 19:05

\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)

\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)

\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)

Ngọc Lục Bảo
Xem chi tiết
Hoàng Phúc
19 tháng 6 2016 lúc 15:20

\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(xy+yz+zx=0\)(theo đề) nên \(2\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\hept{\begin{cases}x^2\ge0\\y^2\ge0\\z^2\ge0\end{cases}}\) (với mọi x;y;z) nên \(x^2+y^2+z^2\ge0\) (với mọi x;y;z)

Để \(x^2+y^2+z^2=0\) \(\Leftrightarrow\) \(\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}\Leftrightarrow}x=y=z=0\)

Vậy \(A=\left(0-1\right)^{2016}+0^{2017}+\left(0+1\right)^{2018}=\left(-1\right)^{2016}+0+1^{2018}=2\)

Cheewin
29 tháng 6 2017 lúc 13:33

Theo đề: x+y+z=0

=> (x+y+z)2=0

<=> x2+y2+z2 +2xy+2xz+2yz=0

<=> x2 + y2 + z2 + 2.(xy+xz+yz)=0

mà xy+xz+yz=0

=> x2 + y2 +z2 =0

<=> x=y=z=0 (đpcm)

Lunox Butterfly Seraphim
Xem chi tiết
Ami Mizuno
8 tháng 9 2020 lúc 21:47
https://i.imgur.com/EZtihyp.jpg
Đức Anh Phan
Xem chi tiết
Mỹ Duyên
20 tháng 7 2017 lúc 8:48

Biến đổi tương đương là ok mà

Ta có; \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

<=> \(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{xz}\ge0\)

<=> \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{xz}+x\right)\ge0\)

<=> \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{x}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

( Luôn đúng)

=> đpcm

Dấu = xảy ra <=> \(x=y=z\)

Trần Thành Phát Nguyễn
Xem chi tiết
alibaba nguyễn
12 tháng 10 2016 lúc 13:54

Theo như câu đưới thì

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge x^2+y^2+z^2\ge xy+yz+xz\)(bất đẳng thức cosi)