cho tỉ lệ thức a/b=c/d chứng minh (a+b/c+d)^2=a^2+b^2/c^2+d^2
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức là có nghĩa ) :
a) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
cho tỉ lệ thức a/b = c/d. chứng minh các tỉ lệ thức sau a^2-b^2 / ab = c^2-d^2/cd ,
Lần sau bạn cho thêm cả dấu ngoặc cho dễ hiểu nhé :v
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) \(\left(b,d\ne0\right)\)
Thay \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) vào \(\frac{a^2-b^2}{ab}\) và \(\frac{c^2-d^2}{cd}\) ta có :
\(\left\{{}\begin{matrix}\frac{\left(b.k\right)^2-b^2}{b.k.b}\\\frac{\left(d.k\right)^2-d^2}{d.k.d}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2.k^2-b^2}{b^2.k}\\\frac{d^2.k^2-d^2}{d^2.k}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2\left(k^2-1\right)}{b^2.k}\\\frac{d^2\left(k^2-1\right)}{d^2.k}\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\frac{k^2-1}{k}\\\frac{k^2-1}{k}\end{matrix}\right.\)(vì b,d khác 0 nên \(b^2,d^2\) khác 0)
=> \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) (vì cùng bằng \(\frac{k^2-1}{k}\))
vậy \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) nếu \(\frac{a}{b}=\frac{c}{d}\)
lâu lắm không làm nên không chắc đâu :v
Cho tỉ lệ thức a/b=c/d, chứng minh: (a+2.c).(b+d)=(a+c) .(b+2.d)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>a=bk; c=dk
(a+2c)(b+d)=(bk+2dk)(b+d)=k(b+2d)(b+d)
(a+c)(b+2d)=(bk+dk)(b+2d)=k(b+2d)(b+d)
Do đó: VT=VP(đpcm)
Cho tỉ lệ thức:(a^2+b^2) / (c^2+d^2) = ab/cd . chứng minh : a/b=c/d hoặc a/b=d/c (chứng minh 1 trong 2 )?
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Cho tỉ lệ thức a/b+c/d, chứng minh: a^2+b^2/c^2+d^2=(2a+b)^2/(2c+d)^2
Cho tỉ lệ thức a/b=c/d chứng minh ac/bd=a^2+c^2/b^2+d^2
=(c-a)^2/(d-b)^2
Cho tỉ lệ thức a/b=c/d. Chứng minh rằng: ab/cd=a^2-b^2/c^2-d^2 và (a+b/c+d)=a^2+b^2/c^2+d^2
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$. Khi đó:
$\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}(1)$
$\frac{a^2-b^2}{c^2-d^2}=\frac{(bk)^2-b^2}{(dk)^2-d^2}=\frac{b^2(k^2-1)}{d^2(k^2-1)}=\frac{b^2}{d^2}(2)$
Từ $(1); (2)$ ta có đpcm
------------------------
Lại có:
$(\frac{a+b}{c+d})^2=(\frac{bk+b}{dk+d})^2=(\frac{b(k+1)}{d(k+1)})^2=(\frac{b}{d})^2(3)$
$\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}=(\frac{b}{d})^2(4)$
Từ $(3); (4)$ ta có đpcm.
Cho tỉ lệ thức a^2+b^2/c^2+d^2=ab/cd. Chứng minh rằng a/b=c/d
Cho tỉ lệ thức a^2+b^2/c^2+d^2=ab/cd. Chứng minh rằng a/b=c/d
Đặt
Khi đó ta có :
và
Suy ra :
Ta lại có :
Đặt
Khi đó ta có :
và
Suy ra :
Ta lại có :
Chứng minh từ tỉ lệ thức a/b=c/đ ta có thể suy ra tỉ lệ thức: a^2+b^2/c^2+d^2=a^2-b^2/c^2-d^2
ban coi trong sach giao khoa ti le thuc se co mot phan chung minh cho ban thay bang cach dat a/b=c/d=k nha
do a/b = c/d
đặt a/b=c/d=k
suy ra a=kb , c=kd
ta có a^2+b^2/c^2+d^2= kb^2+b^2/kd^2 + d^2 = b^2 (k +1)/d^2 (k+1)= b^2/d^2
a^2 - b^2/c^2 - d^2= kb^2 - b^2/ kd^2 - d^2=b^2(k-1)/d^2(k-1)= b^2/d^2
suy ra a^2 +b^2 /c^2 + d^2 = a^2 - b^2/ c^2 - d^2