(x + 1)(x2 – x +1) + x(x2 – 2)
b. (x + 8)2 – 2(x +8)(x -2) + (x -2)2
c. x2(x – 4)(x + 4) – (x2 + 1)(x2- 1) d. (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)
\(b,=\left(x+8-x+2\right)^2=100\\ c,=x^2\left(x^2-16\right)-x^4+1=x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
b) \(=\left(x+8-x+2\right)^2=10^2=100\)
c) \(=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\)
d) \(=x^3+1-x^3+1=2\)
a. x+1/x-2 - x/x+2 + 8/x2 -4
b. x-3/x+1 - x+2/x-1 + 8x/x2 -1
c. x+2/x2-2x + 2/x2+2x + 3x+2/x2-4
d. 4/x - 12/x2+3x + 5/x+3
a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)
c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)
a,
\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b,
\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)
Thực hiện phép tính:
a,4.(x+3)/3x2-x : x2+3x/1-3x
b, x+1/x2-2x-8 . 4-x/x2+x
c, 9x+5/2(x-1)(x+3)2- 5x-7/2(x-1)(x+3)2
d, 18/(x-3)(x2-9)-3/x^2-6x+9-x/x^2-9
e, 1/x2-x+1+1/1-x2+2/x3+1
Bài 1:Phân tích đa thức thành nhân tử:
a) x3y+x-y-1
b) x2.(x-2)+4.(2-x)
c) x3-x2-20x
d) (x2+1)2-(x+1)2
e) 6x2-7x+2
f) x4+8x2+12
g) (x3+x+1).(x3+x)-2
h) (x+1).(x+2).(x+3).(x+4)-1
i) -(x2+2)2+4x.(x2+2)-3x2
j) -(x2+2)2+4x.(x2+2).3x2
k) -(x2+2)2+4x.(x2+2)+3x2
l) 81x4+4y4
Giúp với ạa
a) x³y + x - y - 1
= (x³y - y) + (x - 1)
= y(x³ - 1) + (x - 1)
= y(x - 1)(x² + x + 1) + (x - 1)
= (x - 1)[y(x² + x + 1) + 1]
= (x - 1)(x²y + xy + y + 1)
b) x²(x - 2) + 4(2 - x)
= x²(x - 2) - 4(x - 2)
= (x - 2)(x² - 4)
= (x - 2)(x - 2)(x + 2)
= (x - 2)²(x + 2)
c) x³ - x² - 20x
= x(x² - x - 20)
= x(x² + 4x - 5x - 20)
= x[(x² + 4x) - (5x + 20)]
= x[x(x + 4) - 5(x + 4)]
= x(x + 4)(x - 5)
d) (x² + 1)² - (x + 1)²
= (x² + 1 - x - 1)(x² + 1 + x + 1)
= (x² - x)(x² + x + 2)
= x(x - 1)(x² + x + 2)
e) 6x² - 7x + 2
= 6x² - 3x - 4x + 2
= (6x² - 3x) - (4x - 2)
= 3x(2x - 1) - 2(2x - 1)
= (2x - 1)(3x - 2)
f) x⁴ + 8x² + 12
= x⁴ + 2x² + 6x² + 12
= (x⁴ + 2x²) + (6x² + 12)
= x²(x² + 2) + 6(x² + 2)
= (x² + 2)(x² + 6)
g) (x³ + x + 1)(x³ + x) - 2
Đặt u = x³ + x
x³ + x + 1 = u + 1
(u + 1).u - 2
= u² + u - 2
= u² - u + 2u - 2
= (u² - u) + (2u - 2)
= u(u - 1) + 2(u - 1)
= (u - 1)(u + 2)
= (x³ + x - 1)(x³ + x + 2)
= (x³ + x - 1)(x³ + x² - x² - x + 2x + 2)
= (x³ + x - 1)[(x³ + x²) - (x² + x) + (2x + 2)]
= (x³ + x - 1)[x²(x + 1) - x(x + 1) + 2(x + 1)]
= (x³ + x - 1)(x - 1)(x² - x + 2)
h) (x + 1)(x + 2)(x + 3)(x + 4) - 1
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 1
= (x² + 5x + 4)(x² + 5x + 6) - 1 (1)
Đặt u = x² + 5x + 4
u + 2 = x² + 5x + 6
(1) u.(u + 2) - 1
= u² + 2u - 1
= u² + 2u + 1 - 2
= (u² + 2u + 1) - 2
= (u + 1)² - 2
= (u + 1 + √2)(u + 1 - √2)
= (x² + 5x + 4 + 1 + √2)(x² + 5x + 4 + 1 - √2)
= (x² + 5x + 5 + √2)(x² + 5x + 5 - √2)
i: \(-\left(x^2+2\right)^2+4x\left(x^2+2\right)-3x^2\)
\(=-\left[\left(x^2+2\right)^2-4x\left(x^2+2\right)+3x^2\right]\)
\(=-\left[\left(x^2+2\right)^2-x\left(x^2+2\right)-3x\left(x^2+2\right)+3x^2\right]\)
\(=-\left[\left(x^2+2\right)\left(x^2+2-x\right)-3x\left(x^2+2-x\right)\right]\)
\(=-\left(x^2+2-x\right)\left(x^2-3x+2\right)\)
\(=-\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x-1\right)\)
\(=-\left(x+2\right)\left(x-2\right)\left(x-1\right)^2\)
l: \(81x^4+4y^4\)
\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)
\(=\left(81x^4+36x^2y^2+4y^4\right)-\left(6xy\right)^2\)
\(=\left[\left(9x^2\right)^2+2\cdot9x^2\cdot2y^2+\left(2y^2\right)^2\right]-\left(6xy\right)^2\)
\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)
\(=\left(9x^2+2y^2+6xy\right)\left(9x^2+2y^2-6xy\right)\)
a. x2(x – 2x3) b. (x2 + 1)(5 – x) c. (x – 2)(x2 + 3x – 4) d. (x – 2)(x – x2 + 4) e. (x2 – 1)(x2 + 2x) f. (2x – 1)(3x + 2)(3 – x) g. (x + 3)(x2 + 3x – 5) h. (xy – 2).(x3 – 2x – i. (5x3 – x2 + 2x – 3).(4x2 – x + 2
a: \(=x^3-2x^5\)
e: \(=x^4+2x^3-x^2-2x\)
Bài 2: Rút gọn các biểu thức sau:
a.(x-3)(x + 7) – (x +5)(x -1) b. (x + 8)2 – 2(x +8)(x -2) + (x -2)2
c. x2(x – 4)(x + 4) – (x2 + 1)(x2- 1) d. (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)
\(a,x^2+4x-21-x^2-4x+5=-16\\ b,=\left(x+8-x+2\right)^2=10^2=100\\ c,=x^2\left(x^2-16\right)-\left(x^4-1\right)\\ =x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
Bài 2: Rút gọn các biểu thức sau:
a.(x-3)(x + 7) – (x +5)(x -1) b. (x + 8)2 – 2(x +8)(x -2) + (x -2)2
c. x2(x – 4)(x + 4) – (x2 + 1)(x2- 1) d. (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)
\(a,=x^2+4x-21-x^2-4x+5=-16\\ b,=\left(x+8-x+2\right)^2=10^2=100\\ c,=x^2\left(x^2-16\right)-\left(x^4-1\right)\\ =x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
Thực hiện phép tính:
a,(2x- 4)(x+9)
b,(x2 + 4x +3)(x-2)
c,(x-8)(x+8)
d, x2(7x-5)-7(x3- 4x+6)
e,(x2+2)(x2+x+1)
f,(x2+2)(x4-2x2+4)
g,(x-g)(x+9)
h,(x-2)(2x3-x2+1)+(x2+1)+(x2-2x2)(1-2)x
Dễ
Thế
Mà
Cũnhoir
Dc
Ạ
Chịu
Chắc
Phải
Ngu
Lamqs
Mới
Hỏi
Câu
Này
Rút gọn các biểu thức sau:
a) (x + 8)2 – 2(x +8)(x -2) + (x -2)2
b) x2(x – 4)(x + 4) – (x2 + 1)(x2- 1)
c) (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)
Giải chi tiết giúp em. Cảm ơn ạ
\(a,=\left(x+8-x+2\right)^2=10^2=100\\ b,=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\\ c,=x^3+1-x^3+1=2\)
Bài 2. Rút gọn các biểu thức sau :
A = (x - 3)(x + 7) – (x + 5)(x - 1) B = - 2(2x + 5)2 – (4x + 1)(1 – 4x)
C = x2(x – 4)(x + 4) – (x2 + 1)(x2 - 1) D = (x + 1)(x2 – x + 1) – (x – 1)(x2 + x +1)
E = (x – 1)3 – (x – 1)(x2 + x + 1) – (3x + 1)(1 – 3x)
\(A=x^2+4x-21-x^2-4x+5=-16\\ B=-2\left(4x^2+20x+25\right)-\left(1-16x^2\right)\\ B=-8x^2-40x-50-1+16x^2=8x^2-40x-51\\ C=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\\ D=x^3+1-\left(x^3-1\right)=2\\ E=x^3-3x^2+3x-1-x^3+1-9x^2+1=-12x^2+3x+1\)