giải hệ phương trình \(\int^{2y=x\left(1-y^2\right)}_{2x=y\left(1-x^2\right)}\)
Giải Hệ phương trình:
\(\left\{{}\begin{matrix}3\left(x+y\right)=\left(x+2y\right)\left(2x+y\right)\\\dfrac{1}{x+2y}+\dfrac{1}{\left(2x+y\right)^2}=3\end{matrix}\right.\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^2\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
giải hệ phương trình \(\left\{{}\begin{matrix}2x\left(x-1\right)+\left(y-1\right)\left(2y+1\right)=0\\2y^2+2x+y+1=6xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+2y^2-y-1=0\\2y^2+2x+y+1-6xy=0\end{matrix}\right.\)
Cộng vế với vế:
\(2x^2+4y^2-6xy=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
Thế vào 1 trong 2 pt ban đầu
giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\dfrac{x}{x+2}\right)^2+\left(\dfrac{y}{y+2}\right)^2=1\end{matrix}\right.\)
đk: \(x,y\ne-2\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+2}+\dfrac{y}{x+2}=1\\\left(\dfrac{x}{y+2}\right)^2+\left(\dfrac{y}{x+2}\right)^2=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\dfrac{x}{y+2}\\b=\dfrac{y}{x+2}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+2}+\dfrac{y}{x+2}=1\\\left(\dfrac{x}{y+2}\right)^2+\left(\dfrac{y}{x+2}\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\a^2+b^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+\left(1-a\right)^2=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}2x^2-y^2-4\left(x-y\right)=1\\x^2\left(x-2\right)^2+2=\left(xy-2y\right)\left(xy-4x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)
\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)
giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2-y=1\\2x\left(x+1\right)+2y^2-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-y=1\\2x^2+2y^2+2x-3y=4\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x^2+y^2=y+1\left(1\right)\\2\cdot\left(x^2+y^2\right)+2x-3y=4\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2) ta được: 2(y+1)+2x-3y=4 \(\Leftrightarrow2y+2+2x-3y=4\Leftrightarrow2x-y=2\Leftrightarrow y=2x-2\) (3)
Thay (3) vào (1) ta được: ⇒ \(x^2+\left(2x-2\right)^2=2x-2+1\) \(\Leftrightarrow x^2+4x^2-8x+4=2x-1\) \(\Leftrightarrow5x^2-10x+5=0\)
\(\Leftrightarrow5\left(x-1\right)^2=0\Leftrightarrow x=1\left(4\right)\) Thay (4) vào (3) ta được: y=0
Vậy hpt có nghiệm (x;y)=(1;0)
Giải phương trình và hệ phương trình:
1) \(-2x^2+x+1-2\sqrt{x^2+x+1}=0\)
2) \(\left\{{}\begin{matrix}x^4+y^3x+x^2y^2=3y^4\\2x^2+y^4+1=2x\left(y^2+1\right)\end{matrix}\right.\)
1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)
\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)
Ta có :
\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)
\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)
\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)
Vậy phương trình cho vô nghiệm
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+xy+1=2x\\x\left(x+y\right)^2+x-2=2y^2\end{matrix}\right.\)
- Với \(x=0\) không phải nghiệm
- Với \(x\ne0\):
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{y^2+1}{x}=2\\\left(x+y\right)^2-2\left(\dfrac{y^2+1}{x}\right)=-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\\dfrac{y^2+1}{x}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u+v=2\\u^2-2v=-1\end{matrix}\right.\)
\(\Rightarrow u^2-2\left(2-u\right)=-1\)
\(\Leftrightarrow u^2+2u-3=0\Rightarrow\left[{}\begin{matrix}u=1\Rightarrow v=1\\u=-3\Rightarrow v=5\end{matrix}\right.\)
\(\Rightarrow\) ... (bạn tự thế vào giải tiếp)