Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồng Hà

giải hệ phương trình

\(\left\{{}\begin{matrix}x^2+y^2-y=1\\2x\left(x+1\right)+2y^2-3y=4\end{matrix}\right.\)

Nguyễn Trọng Chiến
20 tháng 1 2021 lúc 13:04

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-y=1\\2x^2+2y^2+2x-3y=4\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x^2+y^2=y+1\left(1\right)\\2\cdot\left(x^2+y^2\right)+2x-3y=4\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2) ta được: 2(y+1)+2x-3y=4 \(\Leftrightarrow2y+2+2x-3y=4\Leftrightarrow2x-y=2\Leftrightarrow y=2x-2\) (3)

Thay (3) vào (1) ta được:  ⇒ \(x^2+\left(2x-2\right)^2=2x-2+1\) \(\Leftrightarrow x^2+4x^2-8x+4=2x-1\) \(\Leftrightarrow5x^2-10x+5=0\) 

\(\Leftrightarrow5\left(x-1\right)^2=0\Leftrightarrow x=1\left(4\right)\) Thay (4) vào (3) ta được: y=0 

Vậy hpt có nghiệm (x;y)=(1;0)


Các câu hỏi tương tự
Nguyễn Thành
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Mai Thị Lệ Thủy
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Ánh Dương
Xem chi tiết
Xích U Lan
Xem chi tiết
Ko Cần Bt
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Ánh Dương
Xem chi tiết