Cho A = 1 + 3 + 32 + …+ 32006
a) Tính 3A
b) Chứng minh A = (32007 – 1):2
Bài 1: cho A = 1 + 21 + 22 + 23 + ...... + 22007
a)Tính 2.A
b)Chứng minh A = 22006 - 1
Bài 2: cho A = 1 + 3 + 31 + 32 + 33 + 34 + 35 + 36 + 37
a)Tính 2.A
b)Chứng minh A = (38 - 1) : 2
Bài 3: cho B = 1 + 3 + 32 + ..... + 32006
a)Tính 3.B
b)Chứng minh B = (32007 - 1) : 2
Bài 4: cho C = 1 + 4 + 42 + 43 + 45 + 46
a)Tính 4.C
b)Chứng minh C = (47 - 1) : 3
Bài 5: Tính tổng
S = 1+ 2+ 22+ 23 + ...... + 22017
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1
Cho A =1 2^1 2^2 2^3 ... 2^2005a)Tính 3Ab)Chứng minh A=2^2006-1
A = 1 + 21 + 22 + 23 + ...+ 22005
chứ em nhỉ?
Cho A = 1+21+22+233+...+22007
a)Tính 3A
b)Chứng minh : A = 22008--1
A \(=\)\(1+2^1+2^2+...+2^{2007}\)
⇒2 A \(=\)\(2+2^2+...+2^{2007}+2^{2008}\)
2A - A \(=\)( \(2+2^2+...+2^{2007}+2^{2008}\) ) - ( \(1+2^1+2^2+...+2^{2007}\) )
A\(=\)\(2^{2008}-1\)
\(3A=3\left(2^{2008}-1\right)\)
\(=3.2^{2008}-3\)
Cho a, b là hai số nguyên dương thỏa mãn \(\dfrac{a+b^3}{a^2+3ab+3b^2-1}\) là một số nguyên. Chứng minh rằng a2 + 3ab + 3b2 - 1 chia hết cho lập phương của một số nguyên lớn hơn 1
cho a+b=1 Chứng minh : a^3+b^3=1-3ab
ta có :
(a+b)3=a3+3a2b+3ab2+b3
(a+b)3=a3+3ab(a+b)+b3 (1)
thay a+b=1 vào (1) ta được :
13=a3+3ab.1+b3
<=>1=a3+3ab+b3
<=>a3+b3=1-3ab
a^3+b^3+3ab(a+b) =(a+b)^3
mà a+b=1 suy ra a^3+b^3+3ab=1
suy ra a^3+b^3=1-3ab
ta có :
(a+b)3=a3+3a2b+3ab2+b3
(a+b)3=a3+3ab(a+b)+b3 (1)
thay a+b=1 vào (1) ta được :
13=a3+3ab.1+b3
<=>1=a3+3ab+b3
<=>a3+b3=1-3ab
chứng minh đẳng thức cho a+b=1.chứng minh rằng a\(^3+b^3+3ab=1\)
Ta có: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab\left(a+b\right)+b^3\) (1)
Thay a + b = 1 vào (1) ta được:
\(1^3=a^3+3ab.1+b^3\)
\(1^3=a^3+3ab+b^3\)
Hay: \(a^3+3ab+b^3=1\)
=> đpcm
Cho a - b = 1 . Chứng minh a^3 - b^3 = 1 + 3ab
\(a^3-b^3=1+3ab\)
Biến đổi VT ta được :
\(VT=\left(a-b\right)\left(a^2+ab+b^2\right)=a^2-2ab+b^2+3ab=\left(a+b\right)^2+3ab=1+3ab=VP\)
Vậy \(a^3-b^3=1+3ab\)
Cho a - b = 1 . Chứng minh a^3 - b^3 = 1 + 3ab
Toán lớp 8 Hằng đẳng thứca3−b3=1+3ab
Biến đổi VT ta được :
VT=(a−b)(a2+ab+b2)=a2−2ab+b2+3ab=(a+b)2+3ab=1+3ab=VP
suy ra................
k mình nha
cho a+b=1 chứng minh rằng a^3+b^3+3ab+1
Chứng minh đẳng thức
a, Cho a + b = 1. Chứng minh rằng a^3+b^3+3ab = 1
Giúp mk vs ạ mk đang cần