Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nue nguyen
Xem chi tiết
Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 7:09

Câu 1

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Câu 2:

\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24

Doãn Hoài Trang
Xem chi tiết
Chu Phương Uyên
21 tháng 6 2020 lúc 22:31

áp dụng bất đẳng thứcxvaco \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

suy ra P >= (a+b+c)^2/ 2 (a+b+c)=1/2

Dấu bằng xảy ra <=> \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

Nguyễn Nguyên Trung
Xem chi tiết
tth_new
10 tháng 3 2020 lúc 15:30

\(VT-VP=\frac{\left(2bc+3a-5\right)^2}{3}+\frac{\left(6c+1\right)\left(c-1\right)^2}{2c+3}-\frac{\left(2bc+3b-5\right)^2\left(2c-3\right)}{3\left(2c+3\right)}\)

\(=\frac{\left(3a+3b-5\right)^2}{3}+\frac{\left(3c-5\right)^2}{3}+\frac{1}{3}+2ab\left(2c-3\right)\)

Từ 2 đẳng thức trên suy ra đpcm. (cái đầu đúng cho \(c\le\frac{3}{2}\), cái sau cho \(c\ge\frac{3}{2}\))

Và ta có thể viết SOS cho bài trên! Cách viết dựa trên dao lam, mời các bạn:)

Khách vãng lai đã xóa
Nguyễn Linh Chi
10 tháng 3 2020 lúc 16:05

Vì a + b + c = 3 nên theo nguyên lí Dirichlet: Tồn tại ít nhất hai số đồng thời không bé hơn 1 hoặc đồng thời không lớn hơn 1

Không mất tính tổng quát có thể g/s hai số đó là a và b

Khi đó ta có: \(\left(a-1\right)\left(b-1\right)\ge0\)

<=> \(ab\ge a+b-1\)

<=> \(abc\ge ac+bc-c=ac+bc+c^2-c^2-c=c\left(a+b+c\right)-c^2-c=2c-c^2\)

Khi đó: \(3\left(a^2+b^2+c^2\right)+4abc\ge\frac{3\left(a+b\right)^2}{2}+3c^2+8c-4c^2=\frac{3\left(3-c\right)^2}{2}-c^2+8c\)

\(=\frac{1}{2}c^2-c+\frac{27}{2}=\frac{1}{2}\left(c^2-2c+1\right)-\frac{1}{2}+\frac{27}{2}=\frac{7}{2}\left(c-1\right)^2+13\ge13\)

Dấu "=" xảy ra <=> a = b = c = 1/

Khách vãng lai đã xóa
tth_new
10 tháng 3 2020 lúc 16:14

Ngoài ra:

Đổi biến sang pqr, cần chứng minh:\(4r-6q+14\ge0\)

 \(LHS\ge\frac{4}{3}\left(4q-9\right)-6q+14=\frac{2}{3}\left(3-q\right)\ge0\)

\(\because r\ge\frac{p\left(4q-p^2\right)}{9}=\frac{4q-9}{3}\) theo Schur.

Đẳng thức xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 22:12

\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)

Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 22:14

\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

Hoàng Việt Hà
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 9 2020 lúc 14:48

\(M=\sqrt{\left(a+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}+\sqrt{\left(b+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}+\sqrt{\left(c+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}\)

\(M\ge\sqrt{\left(a+b+c+\frac{3}{2}\right)^2+\left(\frac{3\sqrt{15}}{2}\right)^2}=3\sqrt{6}\)

\(M_{min}=3\sqrt{6}\) khi \(a=b=c=1\)

\(M_{max}\) ko tồn tại

Khách vãng lai đã xóa
yên phong
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
Xem chi tiết
tthnew
20 tháng 9 2019 lúc 21:01

Bài 1:

\(A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

Đẳng thức xảy ra khi a =b=c=1/3

Bài 2:Buồn ngủ rồi, chắc để đó cho anh Lâm.

Nguyễn Việt Lâm
20 tháng 9 2019 lúc 21:18

Câu 2 có cho a; b dương ko? Nếu cho dương thì đỡ phải xét thêm 1 trường hợp, còn ko cho gì thì xét 2 trường hợp hơi dài

Nguyễn Việt Lâm
20 tháng 9 2019 lúc 22:10

Xét chung luôn a; b ko cần dương

ĐKXĐ: \(a;b\ne0\)

\(A=3\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2-2\right)-8\left(\frac{a}{b}+\frac{b}{a}\right)=3\left(\frac{a}{b}+\frac{b}{a}\right)^2-8\left(\frac{a}{b}+\frac{b}{a}\right)-6\)

Đặt \(\frac{a}{b}+\frac{b}{a}=x\Rightarrow x^2=\left(\frac{a}{b}+\frac{b}{a}\right)^2=\left(\frac{a}{b}-\frac{b}{a}\right)^2+4\ge4\)

\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

TH1: \(x\le-2\)

\(A=3x^2-8x-6=\left(x+2\right)\left(3x-14\right)+22\)

Do \(x\le-2\Rightarrow\left\{{}\begin{matrix}x+2\le0\\3x-14< 0\end{matrix}\right.\) \(\Rightarrow\left(x+2\right)\left(3x-14\right)\ge0\)

\(\Rightarrow A\ge22\)

TH2: \(x\ge2\)

\(A=3x^2-8x-6=\left(x-2\right)\left(3x-2\right)-10\)

Do \(x\ge2\Rightarrow\left\{{}\begin{matrix}x-2\ge0\\3x-2>0\end{matrix}\right.\) \(\Rightarrow\left(x-2\right)\left(3x-2\right)\ge0\)

\(\Rightarrow A\ge-10\)

So sánh \(-10\)\(22\Rightarrow A_{min}=-10\) khi \(x=2\) hay \(a=b\)

Nếu a; b dương thỉ chỉ cần TH2

Tống Cao Sơn
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2023 lúc 20:35

Đặt \(\left\{{}\begin{matrix}a+c=x>0\\b+c=y>0\end{matrix}\right.\) \(\Rightarrow xy=1\)

\(A=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}\)

\(=\dfrac{1}{\left(x-y\right)^2}+x^2+y^2-2xy+2xy\)

\(=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2}}+2=4\)