1. Cho a,b >0; a+b ≤ 1
Tìm min \(N=ab+\dfrac{1}{ab}\)
2. Cho a,b,c >0 t/m: a+b+c ≥ 6
Tìm min \(P=5a+6b+7c+\dfrac{1}{a}+\dfrac{8}{b}+\dfrac{27}{c}\)
3. Cho a,b,c ∈ \(\left[-1;2\right]\) và \(a^2+b^2+c^2=6\)
\(CM:\) a+b+c ≥ 0
Cho các số dương a,b,c thỏa mãn a+b+c=3.CMR:3(a2+b2+c2)+4abc》13
Giúp mk vs
1. Cho a,b >0
Tìm min: Q= \(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{a^2}}\)
2. Cho a,b,c >0 và a+b+c ≤ 1
Tìm min P=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
cho a;b;c là các số thực dương.Tìm Min của biểu thức:
\(A=\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\frac{a^3+b^3+c^3}{4abc}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
cho số thực a,b,c>0. CMR
\(\frac{8}{\left(a+b\right)^2+4abc}+\frac{8}{\left(b+c\right)^2+4abc}+\frac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3}\)
cho a,b,c>o và a+b+c=1
Tìm min của \(2\left(a^2b+b^2c+c^2a\right)+\left(a^2+b^2+c^2\right)+4abc\)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{9}{\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}.\)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{9}{2\left(ab+bc+ac\right)}+\dfrac{2}{a^2+b^2+c^2}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=1
Tìm giá trị nhỏ nhất của biểu thức :\(P=\dfrac{9}{2\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}\)