Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Thị Minh Thư
Xem chi tiết
Khánh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 21:23

1: (5x+3)^2>=0

=>2(5x+3)^2>=0

=>A<=6

Dấu = xảy ra khi x=-3/5

2: (x+9)^2+10>=10 

=>B<=13/10

Dấu = xảy ra khi x=-9

3: -3(2x-1)^2<=0

=>-3(2x-1)^2-7<=-7

Dấu = xảy ra khi x=1/2

Nguyễn Thị Minh Thư
Xem chi tiết
Minh Cao
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2021 lúc 21:04

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

nam do duy
Xem chi tiết

Biểu thức nào em?

Nguyễn Huy Trường Lưu
Xem chi tiết
Nguyễn Đức Trí
30 tháng 8 2023 lúc 15:42

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

Nguyễn Đức Trí
30 tháng 8 2023 lúc 15:38

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

BHQV
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 21:14

Sửa đề: Tìm x để B đạt GTLN

\(B=\dfrac{4}{x^2-2x+2}\)

\(=\dfrac{4}{x^2-2x+1+1}\)

\(=\dfrac{4}{\left(x-1\right)^2+1}\)

\(\left(x-1\right)^2>=0\forall x\)

=>\(\left(x-1\right)^2+1>=1\forall x\)

=>\(B=\dfrac{4}{\left(x-1\right)^2+1}< =\dfrac{4}{1}=4\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

Vậy: \(B_{max}=4\) khi x=1

Cấn Minh Khôi
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2023 lúc 17:17

Chắc đề là \(x+y+z=3\)

Ta có: 

\(\left(2x+y+z\right)^2=\left(x+y+x+z\right)^2\ge4\left(x+y\right)\left(x+z\right)\)

\(\Rightarrow P\le\dfrac{x}{4\left(x+y\right)\left(x+z\right)}+\dfrac{y}{4\left(x+y\right)\left(y+z\right)}+\dfrac{z}{4\left(x+z\right)\left(y+z\right)}\)

\(\Rightarrow P\le\dfrac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{4\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\dfrac{xy+yz+zx}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Mặt khác:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)

\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}.\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)

\(=\dfrac{8}{9}\left(x+y+z\right)\left(zy+yz+zx\right)=\dfrac{8}{3}\left(xy+yz+zx\right)\)

\(\Rightarrow P\le\dfrac{xy+yz+zx}{2.\dfrac{8}{3}\left(xy+yz+zx\right)}=\dfrac{3}{16}\)

Dấu "=" xảy ra khi \(x=y=z=1\)