Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Thu gọn và cho bt tập xác định của biểu thức
A= \(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-2}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}+2\sqrt{x-5}}{x\sqrt{x}+1}\)
B= \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
C= \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)
D= \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{3\sqrt{x}-1}{x-5\sqrt{x}+2}\)
E= \(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
Rút gọn biểu thức
a) A=\(2\sqrt{\left(2-\sqrt{5}\right)^2}-\dfrac{8}{3-\sqrt{5}}\)
b) B= \(\left(\dfrac{2\sqrt{x}}{x-4}-\dfrac{1}{\sqrt{x}+2}\right):\left(1+\dfrac{2}{\sqrt{x}-2}\right)\) Với x>0, x khác 4
A=\(\dfrac{\sqrt{x}+1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+6\sqrt{x}+2}{2x+5\sqrt{x}-3}\) B=\(\dfrac{\sqrt{x}+3}{x+8}\) Tìm GTLN: P=AB
Rút gọn các biểu thức
a)\(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{a-9}\)
b)\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
Help me !!!
Cho biểu thức M=\(\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)
ĐK: x≥0
Tìm GTLN của
B= 1/M - \(\dfrac{\sqrt{x}}{27}\)
A= 1/M - \(\dfrac{\sqrt{x}+5}{12}\)
(\(\dfrac{x+2}{x\sqrt{x}-1}\)+\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)+\(\dfrac{1}{1-\sqrt{x}}\)) : \(\dfrac{\sqrt{x}-1}{2}\)
a) Rút gọn A
b)Tìm x để biểu thức A đạt GTLN.
------------------------------------------
Mong mng giúp đỡ ạ!
Cho 2 biểu thức A= \(\dfrac{7}{\sqrt{x}+8}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
a) Chứng minh B= \(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm GTLN của B
c) Tìm số nguyên x để biểu thức P = A.B có giá trị là số nguyên.
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.