Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hữu Ngọc Minh
Xem chi tiết
phạm văn tuấn
14 tháng 12 2017 lúc 6:28

<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1

Khi đó Pt 36√x−2 +4√x−2+4√y−1 +√y−1=28

theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24

                                  và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4

Pt đã cho có VT>= 28 Dấu "=" xảy ra 

36√x−2 =4√x−2⇔x=11

và 4√y−1 =√y−1⇔y=5

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

Nhan Thanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:44

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:46

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:49

3.

ĐKXĐ: \(x\ge-1\)

\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Ling ling 2k7
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 10 2021 lúc 10:03

6) ĐKXĐ: \(x\le-6\)

\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)

\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)

Vậy \(x\le-6\)

7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)

Vậy \(x\ge\dfrac{2}{3}\)

8) ĐKXĐ: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)

\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)

9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

 

 

Minh Anh Vũ
Xem chi tiết
An Thy
2 tháng 7 2021 lúc 16:27

e) \(\sqrt{x^2}=\left|-8\right|\Rightarrow\left|x\right|=8\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}=\sqrt{\dfrac{8-2\sqrt{7}}{2}}-\sqrt{\dfrac{8+2\sqrt{7}}{2}}+\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}+\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}+\sqrt{2}\)

\(=\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}+\sqrt{2}=\dfrac{\sqrt{7}-1}{\sqrt{2}}-\dfrac{\sqrt{7}+1}{\sqrt{2}}+\sqrt{2}\)

\(=-\dfrac{2}{\sqrt{2}}+\sqrt{2}=-\sqrt{2}+\sqrt{2}=0\)

f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)

\(=\sqrt{\dfrac{12+2\sqrt{11}}{2}}-\sqrt{\dfrac{12-2\sqrt{11}}{2}}+3\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{11}\right)^2+2.\sqrt{11}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}\right)^2-2.\sqrt{11}.1+1^2}{2}}+3\sqrt{2}\)

\(=\sqrt{\dfrac{\left(\sqrt{11}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}-1\right)^2}{2}}+3\sqrt{2}\)

\(=\dfrac{\left|\sqrt{11}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{11}-1\right|}{\sqrt{2}}+3\sqrt{2}=\dfrac{\sqrt{11}+1}{\sqrt{2}}-\dfrac{\sqrt{11}-1}{\sqrt{2}}+3\sqrt{2}\)

\(=\dfrac{2}{\sqrt{2}}+3\sqrt{2}=\sqrt{2}+3\sqrt{2}=4\sqrt{2}\)

hoàng thuỷ
Xem chi tiết
Từ Hạ
16 tháng 7 2018 lúc 9:55

Đk: \(x\ge-2\)

\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)

\(\Leftrightarrow\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\) (*)

TH1: \(\sqrt{x+2}-3\ge0\)

(*) \(\Leftrightarrow\sqrt{x+2}-2+\sqrt{x+2}-3=1\)

\(\Leftrightarrow2\sqrt{x+2}=6\Leftrightarrow\sqrt{x+2}=3\Leftrightarrow x+2=9\Leftrightarrow x=7\left(N\right)\)

TH2: \(\sqrt{x+2}-2< 0\)

(*) \(\Leftrightarrow-\sqrt{x+2}+2-\sqrt{x+2}+3=1\)

\(\Leftrightarrow-2\sqrt{x+2}=-4\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(L\right)\)

TH3: \(\left\{{}\begin{matrix}\sqrt{x+2}-2\ge0\\\sqrt{x+2}-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+2}\ge2\\\sqrt{x+2}< 3\end{matrix}\right.\) \(\Leftrightarrow2\le\sqrt{x+2}< 3\) \(\Leftrightarrow4\le x+2< 9\) \(\Leftrightarrow2\le x< 7\)

(*) \(\Leftrightarrow1=1\) (luôn đúng)

Kl: 2\< x \< 7

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 22:42

a) Ta có: \(C=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{6\sqrt{x}-8}{x-3\sqrt{x}+2}\)

\(=\dfrac{x-4\sqrt{x}+4-\left(x+\sqrt{x}-2\right)+6\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+2\sqrt{x}-4-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{1}{\sqrt{x}-1}\)

b) Thay x=36 vào C, ta được:

\(C=\dfrac{1}{6-1}=\dfrac{1}{5}\)

nguyễn phương thùy
Xem chi tiết
Hiệu diệu phương
28 tháng 5 2019 lúc 21:54

\(M=\left(\frac{\sqrt{x}}{x-36}-\frac{\sqrt{x}-6}{x+6\sqrt{x}}\right):\frac{2\sqrt{x}-6}{x+6\sqrt{x}}\)

=\(\left(\frac{\sqrt{x}}{\left(\sqrt{x}\right)^2-6^2}-\frac{\sqrt{x}-6}{\sqrt{x}\left(\sqrt{x}+6\right)}\right):\frac{2\sqrt{x}-6}{\sqrt{x}\left(\sqrt{x}+6\right)}\)

=\(\left(\frac{\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}-\frac{\sqrt{x}-6}{\sqrt{x}\left(\sqrt{x}+6\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}+6\right)}{2\sqrt{x}-6}\)

=\(\left(\frac{x-\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}{\sqrt{x}\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}+6\right)}{2\sqrt{x}-6}\)

=\(\left(\frac{x-x+6\sqrt{x}+6\sqrt{x}-36}{\sqrt{x}\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}+6\right)}{2\sqrt{x}-6}\)

=\(\left(\frac{12\sqrt{x}-36}{\sqrt{x}\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}+6\right)}{2\sqrt{x}-6}\)

=\(\left(\frac{12\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}+6\right)}{2\left(\sqrt{x}-3\right)}\)

=\(\frac{6}{\sqrt{x}-6}\)

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Linh Chi
12 tháng 10 2019 lúc 23:48

ĐK: \(x\ge-1\)

pt <=> \(\left(14\sqrt{x+35}-84\right)+\left(6\sqrt{x+1}-\sqrt{x^2+36x+35}\right)=0\)

<=> \(14\left(\sqrt{x+35}-6\right)+\sqrt{x+1}\left(6-\sqrt{x+35}\right)=0\)

<=> \(\left(\sqrt{x+35}-6\right)\left(11-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x+35}-6=0\\11-\sqrt{x+1}=0\end{cases}}\)Em làm tiếp nhé!

Alice
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 7 2021 lúc 21:17

ĐKXĐ: \(-6\le x\le11\)

\(\left(x-2\right)^2-64+\sqrt{x+6}-4+1-\sqrt{11-x}=0\)

\(\Leftrightarrow\left(x-10\right)\left(x+6\right)+\dfrac{x-10}{\sqrt{x+6}+4}+\dfrac{x-10}{1+\sqrt{11-x}}=0\)

\(\Leftrightarrow\left(x-10\right)\left(x+6+\dfrac{1}{\sqrt{x+6}+4}+\dfrac{1}{1+\sqrt{11-x}}\right)=0\)

\(\Leftrightarrow x=10\)