cho các số nguyên dương a , b thỏa mãn 2a ^2- b^2 / a^2+b^2=-1/13. Tìm dạng tối giản của a/b
cho các số nguyên dương a; b thỏa mãn 2a^2 - b^2 \ a^2 +b^2 = -1 \ 13
Tìm dạng tối giản của phân số a \ b
Cho a,b thuộc Z+,thỏa mãn:
(2a2-b2)/(a2+b2)=-1/13
Tìm dạng tối giản của a/b.
ai giải đc mình TICK cho
Cho a,b là hai số nguyên dương khác nhau, thỏa mãn \(2a^2+a=3b^2+b\) .
Chứng minh \(\dfrac{a-b}{2a+2b+1}\) là phân số tối giản
cho các số nguyên dương x,y thỏa mãn \(x^3-9y^2+9x-6y=1\) a) chứng minh \(\dfrac{x}{x^2+9}\) là phân số tối giản b) tìm tất cả các cặp số (x;y)
Lời giải:
$x^3-9y^2+9x-6y=1$
$\Leftrightarrow x^3+9x=9y^2+6y+1$
$\Leftrightarrow x(x^2+9)=(3y+1)^2$
Đặt $(x,x^2+9)=d$ thì suy ra $9\vdots d(*)$
$(3y+1)^2=x(x^2+9)\vdots d^2\Rightarrow 3y+1\vdots d$. Mà $(3y+1,3)=1$ nên $(3,d)=1(**)$
Từ $(*);(**)\Rightarrow d=1$, hay $x,x^2+9$ nguyên tố cùng nhau.
$\Rightarrow \frac{x}{x^2+9}$ là phấn số tối giản.
Cho a,b là các số nguyên dương thỏa mãn a + 2021b \(⋮\) 2022. Chứng minh rằng phân số \(\dfrac{2a+2020b}{3a+2019b}\) không là phân số tối giản.
Ta có:
2a + 2021b = 2022a + b - a
Vậy phân số ban đầu có thể viết lại dưới dạng:
(2022a + b = a + 20206)/(3a + 2019b) -
= (2022a + b)/(3a + 2019b) + (20206
- a)/(3a + 2019b)
= 674 + (20206 - a)/(3a + 2019b)
Vì a, b là các số nguyên dương nên ta có:
0 < (20206 - a)/(3a + 2019b) < 1
Vậy phân số ban đầu không tối giản vì nó có thể viết dưới dạng tổng của một số nguyên và một phân số có tử số nhỏ hơn mẫu số.
1. Tìm a,b là các số nguyên dương thỏa mãn (a+b+1)2-2a+2b là số chính phương
2. Tìm a và b là các số nguyên dương thỏa mãn (a2-b2)=10b+9
THÁCH CÁC BẠN LÀM ĐƯỢC ĐẤY!!!!!!
Làm được thì giúp nhanhhhhhhh lên nha
Tìm các số nguyên dương a,b thỏa mãn `a^3 + a^2 + 2a vdots ab-1`.
Cho các số thực dương a, b thỏa mãn điều kiện: \(a+b< =1\). Tìm GTNN của biểu thức: \(P=\dfrac{b^2}{a^2b^2+b^2+1}+\dfrac{b}{2a}\)
Cho các số thực dương a,b thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}=2\). Tìm GTLNN của biểu thức \(Q=\dfrac{1}{a^4+b^2+2b^2}+\dfrac{1}{b^4+a^2+2a^2b}\)
Khúc đầu là: \(\dfrac{1}{a^4+b^2+2b^2}\) hay \(\dfrac{1}{a^4+b^2+2ab^2}\) ??