f(x)= x2+2(m-1)x +m+5
Tìm m để bpt f(x) < 0 có nghiệm
f(x)= x^2-m+1+m-5
tìm m biết f(x)có nghiệm là 1
f(x) =x^2-m+1+m+5 =x^2+6
Vì f(x) có nghiệm là 1
=> f(1) =0
=> 1^2+6=0
<=>7=0 (VL)
Vậy không tồn tại m thỏa mãn
Cho hàm số y=f(x)=x2 - 2(m-1)x + m
a) Tìm m để bpt f(x≥0) nhận mọi x thuộc R là nghiệm
b) Tìm m để pt f(x) = 0 có 2 nghiệm x1, x2 lớn hơn 1.
a: Để bất phương trình có vô số nghiệm thì \(\left\{{}\begin{matrix}\left(2m-2\right)^2-4m< =0\\1>0\end{matrix}\right.\Leftrightarrow4m^2-8m+4-4m< =0\)
=>\(m^2-3m+1< =0\)
=>\(\dfrac{3-\sqrt{5}}{2}< =m< =\dfrac{3+\sqrt{5}}{2}\)
b: Để f(x)=0 có hai nghiệm thì \(m^2-3m+1>=0\)
=>\(\left[{}\begin{matrix}m>=\dfrac{3+\sqrt{5}}{2}\\m< =\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)
Theo đề, ta có: x1>1; x2>1
=>x1+x2>2
=>2(m-1)>2
=>m>2
Câu 1 : tìm m để BPT ( m - 1 )x2 + 2 ( m - 2 )x - 1 > 0 nghiệm đúng với mọi x ∈ R
Câu 2 : tìm m để BPT ( m - 1 )x2 + 2 ( m - 2 )x - 1 ≥ 0 vô nghiệm .
Giúp em với ạ . ThanksU <33
a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\) vô nghiệm
Vậy không tồn tại giá trị m thỏa mãn
b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)
\(\Leftrightarrow\) vô nghiệm
Vậy không tồn tại giá trị m thỏa mãn
1...Cho f(x)= (m+1)x^2-2(m-1)x+m-2
a. Tìm m để pt f(x)=0 có hai nghiệm trái dấu
b.tìm m để bpt f(x)>0 để vô nghiệm
2...tìm m để các bpt sau:
a.2x^2+(m-2)x-m+4>0 đúng với mọi x
b.mx^2+(m-1)x+m-1 >= 0 đúng với mọi x
3.CMR: cot(x-π/4)=sinx+cosx/sinx-cosx
Bài 1:
a/ Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)
\(\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)
\(\Rightarrow-1< m< 2\)
b/ Để \(f\left(x\right)>0\) vô nghiệm \(\Rightarrow f\left(x\right)\le0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-m+3\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Bài 2:
a/ \(\Leftrightarrow\left\{{}\begin{matrix}2>0\\\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+4m-28< 0\)
\(\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)\left(-1-3m\right)\ge0\end{matrix}\right.\) \(\Rightarrow0< m\le1\)
Bài 3:
\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{cosx.cos\frac{\pi}{4}+sinx.sin\frac{\pi}{4}}{sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}}=\frac{sinx+cosx}{sinx-cosx}\)
Cho f(x) = x2 -2mx +2m +8
1/ tìm m để pt f(x) =0. a) có nghiệm . b) có 2 nghiệm dương phân biệt
2/ tìm m để bất phương trình f(x) <0 có nghiệm
3/ tìm m để bpt f(x) > 0 thỏa ∀x ∈ R
Cho tam thức bậc hai f(x)=3x^2-6(2m+1)x+12m+5
Tìm m để phương trình có nghiệm
Pt có No ⇔ \(\Delta'\ge0\Leftrightarrow9\left(2m+1\right)^2-3\left(12m+5\right)\ge0\)
\(\Leftrightarrow36m^2-6\ge0\Leftrightarrow m^2\ge\dfrac{1}{6}\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{1}{6}\\m\le-\dfrac{1}{6}\end{matrix}\right.\)
cho đa thức f(x)=(3-m)x2 -2(m+3)x+m+2. tìm m để bpt f(x)≤0 vô nghiệm.
TH1: m=3
\(f\left(x\right)=-2\left(3+3\right)\cdot x+3+2=-12x+5\)
Để f(x)<=0 vô nghiệm thì f(x)>0 với mọi x
=>-12x+5>0 với mọi x(vô lý)
=>Loại
TH2: m<>3
\(\text{Δ}=\left(2m+6\right)^2-4\left(3-m\right)\left(m+2\right)\)
\(=4m^2+24m+36+4\left(m^2-m-6\right)\)
\(=8m^2+20m+12\)
\(=4\left(2m^2+5m+3\right)\)
\(=4\left(2m+3\right)\left(m+1\right)\)
Để f(x)<=0 vô nghiệm thì f(x)>0 với mọi x
=>\(\left\{{}\begin{matrix}\left(2m+3\right)\left(m+1\right)< 0\\3-m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}< m< -1\\m< 3\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
1.Tìm m để bpt \(2\left|x-m\right|+x^2+2>2mx\) thỏa mãn với mọi x
2. Tìm m để bpt : \(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\) có nghiệm
1.
\(2\left|x-m\right|+x^2+2>2mx\)
\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)
\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)
\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)
Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)
\(\Leftrightarrow-\sqrt{2}< m< 2\)
Vậy \(-\sqrt{2}< m< 2\)
2.
\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)
\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)
\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)
Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)
Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)
\(\Leftrightarrow2m^2-3m+1< 0\)
\(\Leftrightarrow\dfrac{1}{2}< m< 1\)
Cho hàm số F(x) = (m + 1)x2 - 2mx + m - 2 (m là tham số). a) Tìm m để phương trình f(x) = 0 có hai nghiệm trái dấu? b) Tìm m để bất phương trình f(x) < 0 có một nghiệm đúng với mọi x.
Với thì PT có nghiệm (chọn)
Với thì là đa thức bậc 2 ẩn
có nghiệm khi mà
Tóm lại để có nghiệm thì