TH1: m=3
\(f\left(x\right)=-2\left(3+3\right)\cdot x+3+2=-12x+5\)
Để f(x)<=0 vô nghiệm thì f(x)>0 với mọi x
=>-12x+5>0 với mọi x(vô lý)
=>Loại
TH2: m<>3
\(\text{Δ}=\left(2m+6\right)^2-4\left(3-m\right)\left(m+2\right)\)
\(=4m^2+24m+36+4\left(m^2-m-6\right)\)
\(=8m^2+20m+12\)
\(=4\left(2m^2+5m+3\right)\)
\(=4\left(2m+3\right)\left(m+1\right)\)
Để f(x)<=0 vô nghiệm thì f(x)>0 với mọi x
=>\(\left\{{}\begin{matrix}\left(2m+3\right)\left(m+1\right)< 0\\3-m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}< m< -1\\m< 3\end{matrix}\right.\Leftrightarrow m\in\varnothing\)