Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 13:35

Đặt vế trái là P

Ta có:

\(\dfrac{a}{b^3+ab}=\dfrac{a}{b\left(a+b^2\right)}=\dfrac{1}{b}-\dfrac{b}{a+b^2}\ge\dfrac{1}{b}-\dfrac{b}{2\sqrt{ab^2}}=\dfrac{1}{b}-\dfrac{1}{2\sqrt{a}}\ge\dfrac{1}{b}-\dfrac{1}{4}\left(\dfrac{1}{a}+1\right)\)

Tương tự và cộng lại:

\(P\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3\right)\)

\(P\ge\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\ge\dfrac{3}{4}.\dfrac{9}{a+b+c}-\dfrac{3}{4}=\dfrac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Ngô Thị Yến Nhi
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
EDOGAWA CONAN
22 tháng 12 2019 lúc 10:17
https://i.imgur.com/sjqJMto.jpg
Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
8 tháng 1 2021 lúc 22:20

hơn 1 năm rồi không ai làm :'(

a) Áp dụng bđt Cauchy ta có :

\(a+b\ge2\sqrt{ab}\)(1)

\(b+c\ge2\sqrt{bc}\)(2)

\(c+a\ge2\sqrt{ca}\)(3)

Nhân (1), (2), (3) theo vế

=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8\sqrt{\left(abc\right)^2}=8\left|abc\right|=8abc\)

=> đpcm

Dấu "=" xảy ra <=> a=b=c

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
8 tháng 1 2021 lúc 22:23

b) Áp dụng bđt AM-GM ta có :

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2\sqrt{c^2}=2c\)

TT : \(\frac{ca}{b}+\frac{ab}{c}\ge2a\)\(\frac{bc}{a}+\frac{ab}{c}\ge2b\)

Cộng vế với vế

=> \(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

=> \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)( đpcm )

Dấu "=" xảy ra <=> a=b=c

Khách vãng lai đã xóa
Quách Nguyễn Sông Trà
Xem chi tiết
Quoc Tran Anh Le
28 tháng 6 2019 lúc 16:51

Đề này sai đó bạn.

Giả sử c = 2,5; a = 2 và c = 1,5

Ta có: \(c\ge a;c\ge b\) nhưng \(c< a+b\) (mâu thuẫn với đề bài).

Duyen Đao
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 6 2020 lúc 16:36

a/ \(\Leftrightarrow a^2-b^2+c^2\ge a^2+b^2+c^2-2ab+2ac-2bc\)

\(\Leftrightarrow b^2-ab+ac-bc\le0\)

\(\Leftrightarrow b\left(b-a\right)-c\left(b-a\right)\le0\)

\(\Leftrightarrow\left(b-c\right)\left(b-a\right)\le0\) (luôn đúng do \(a\ge b\ge c\))

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)

b/ Tương tự như câu trên:

\(a^2-b^2+c^2-d^2\ge\left(a-b+c\right)^2-d^2=\left(a-b+c-d\right)\left(a-b+c+d\right)\ge\left(a-b+c-d\right)^2\)

Nguyễn Phương Oanh
Xem chi tiết
tthnew
10 tháng 7 2019 lúc 10:10

Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:

\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)

Giải phần dấu "=" ra ta được a = b =c

Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)

Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)

Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)

\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)

Bài toán đúng theo kết quả câu 1.

Hân Ngọc
Xem chi tiết
Nguyễn Hồng Phúc
Xem chi tiết
Họ Và Tên
Xem chi tiết