a)Cho 3 số dương 0 ≤ a ≤ b ≤ c ≤ 1. CMR : (a/bc+1)+(b/ac+1)+(c/ab+1) ≤ 2
b)Cho a,b,c la 3 canh của 1 Δ. CMR :2(ab+bc+ca) > a2+b2+c2.Cho a,b,c,x,y,z là các số nguyên dương và 3 số a,b,c khác 1 thỏa mãn: \(a^x=bc;b^y=ca;c^z=ab\)
CMR:
x+y+z+2=xyz.
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Bài 1 : Cho 4 số a , b ,c khác 0 thỏa mãn \(^2=ac;c^2=bd;b^3+c^3+d^3\ne0\)
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2 : Cho a , b , c , d > 0 . CMR :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho 3 số $a,b,c$ thỏa mãn \(0\leq a\leq b\leq c\leq 1\). CMR: \(A=\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq 2\)
Cho a,b,c là ba số thực khác 0 thỏa a+b-c/c = b+c-a/a = c +a-b/b
Tính B = ( 1+ b/a)(1 + a/c)(1 + b/c)
Cho a,b,c,x,y,z là các số thực khác 0,thỏa:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).CMR:\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)}=\dfrac{1}{a^2+b^2+c^2}\)
Cho a,b,c là số thực dương thỏa mãn
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Giá trị của biểu thức B=( 1+\(\dfrac{b}{a}\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
Bài 1 : Cho các số thực a,b,c khác 0 thỏa mãn \(a+b+c=2;a^2+b^2+c^2=4\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Chứng minh rằng : xy+yz+zx=0
Bài 2 : Cho x khác -1;0;1 thỏa mãn \(\dfrac{a}{x-1}=\dfrac{b}{x}=\dfrac{c}{x+1}\) Chứng minh rằng : \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
Bài 3 : Cho các số thực a,b,c khác 0 thỏa mãn \(\dfrac{x}{a+2b-c}=\dfrac{y}{2a+b+c}=\dfrac{z}{4b+c-4a}\) . Chứng minh rằng : \(\dfrac{a}{x+2y-z}=\dfrac{b}{2x+b+c}=\dfrac{c}{4y+z-4x}\)
GIÚP MÌNH ĐI CHIỀU 1 GIỜ ĐI HOK RỒI !!!