Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Châu
Xem chi tiết
Nguyễn Thanh Hằng
19 tháng 1 2021 lúc 19:50

\(\left(x^2-2x-3\right)^2\ge\left(x^2+3x+3\right)^2\)

\(\Leftrightarrow\left(x^2-2x-3\right)^2-\left(x^2+3x+3\right)^2\ge0\)

\(\Leftrightarrow\left(-5x-6\right)\left(2x^2+x\right)\ge0\)

\(\Leftrightarrow x\left(-5x-6\right)\left(2x+1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{6}{5}\le x\le0\\\left(-\infty;-\dfrac{1}{2}\right)\end{matrix}\right.\)

Vien Bui
Xem chi tiết
Phùng Khánh Linh
6 tháng 6 2018 lúc 15:29

Bài 1. a) 4x - 3 = 0

⇔ x = \(\dfrac{3}{4}\)

KL.....

b) - x + 2 = 6

⇔ x = - 4

KL...

c) -5 + 4x = 10

⇔ 4x = 15

⇔ x = \(\dfrac{15}{4}\)

KL....

d) 4x - 5 = 6

⇔ 4x = 11

⇔ x = \(\dfrac{11}{4}\)

KL....

h) 1 - 2x = 3

⇔ -2x = 2

⇔ x = -1

KL...

Bài 2. a) ( x - 2)( 4 + 3x ) = 0

⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)

KL......

b) ( 4x - 1)3x = 0

⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)

KL.....

c) ( x - 5)( 1 + 2x) = 0

⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)

KL.....

d) 3x( x + 2) = 0

⇔ x = 0 hoặc x = -2

KL.....

Phùng Khánh Linh
6 tháng 6 2018 lúc 15:35

Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0

⇔ x - 10 ≥ 0

⇔ x ≥ 10

0 10 b) 3 - 2( 2x + 3) ≤ 9x - 4

⇔ - 4x - 3 ≤ 9x - 4

⇔ 13x ≥1

⇔ x ≥ \(\dfrac{1}{13}\)

0 1/13

Mơ Nhùn
Xem chi tiết
Tâm Trần Huy
1 tháng 5 2018 lúc 20:33

a \(2x+2>4\\ \Leftrightarrow2\left(x+1\right)>4\\ \Leftrightarrow x+1>2\\ \Leftrightarrow x>1\)

b \(3x+2>-5\\ \Leftrightarrow3x>-7\\ \Leftrightarrow x>\dfrac{-7}{3}\)

c \(10-2x>2\\ \Leftrightarrow2\left(5-x\right)>2\\ \Leftrightarrow5-x>1\\ \Leftrightarrow-x>-4\\ \Leftrightarrow x< 4\)

d \(1-2x< 3\\ \Leftrightarrow-2x< 2\\ \Leftrightarrow2x>2\\ \Leftrightarrow x>1\)

Kim Tuyến
4 tháng 5 2018 lúc 20:42

a)2x+2>4

<=> 2x>4-2

<=>2x>2

<=>x>1

Vậy...

b)3x+2>-5

<=>3x>-5-2

<=>3x>-7

<=>x>\(\dfrac{-7}{3}\)

Vậy...

c)10-2x>2

<=>-2x>-10+2

<=>-2x>-8

<=>x<4

Vậy...

d)1-2x<3

<=>-2x<3-1

<=>-2x<2

<=>x>-1

Vậy...

e)10x+3-5\(\le\)14x+12

<=>10x-2\(\le\)14x+12

<=>10x-14x\(\le\)2+12

<=>-4x\(\le\)14

<=>x\(\ge\)\(\dfrac{-7}{2}\)

Vậy...

f)(3x-1)<2x+4

<=> 3x-2x<1+4

<=>x<5

Vậy...

Đặng Hạnh
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
Phạm Thị Thùy Linh
3 tháng 7 2019 lúc 20:51

\(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)

\(\Rightarrow\frac{12x}{30}+\frac{10\left(3-2x\right)}{30}-\frac{15\left(3x+2\right)}{30}\ge0\)

\(\Rightarrow12x+30-20x-45x-30\ge0\)

\(\Rightarrow-53x\ge0\)\(\Leftrightarrow x\le0\)\(\left(1\right)\)

\(\frac{x}{2}+\frac{3-2x}{5}\ge\frac{3x-5}{6}\)

\(\Rightarrow\frac{15x}{30}+\frac{6\left(3-2x\right)}{30}-\frac{5\left(3x-5\right)}{30}\ge0\)

\(\Rightarrow15x+18-12x-15x+25\ge0\)

\(\Rightarrow-12x\ge-43\)\(\Rightarrow12x\le43\Leftrightarrow x\le\frac{43}{12}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) ta có tập nghiệm chung của cả hai phương trình là \(x\le0\)

Tô Thu Huyền
Xem chi tiết
Tô Thu Huyền
18 tháng 3 2018 lúc 14:09
https://i.imgur.com/pzS21PI.jpg
nguyen the vuong
31 tháng 3 2019 lúc 10:10

a,\(2\left(2x-3\right)\ge5\left(2+x\right)+13\)

\(\Leftrightarrow4x-6\ge10+5x+13\)

\(\Leftrightarrow4x-5x\ge10+13+6\)

\(\Leftrightarrow-x\ge29\)

\(\Leftrightarrow x\ge-29\)

Trần Thục Lê Ngân
15 tháng 8 2019 lúc 8:55

a,2(2x−3)≥5(2+x)+132(2x−3)≥5(2+x)+13

⇔4x−6≥10+5x+13⇔4x−6≥10+5x+13

⇔4x−5x≥10+13+6⇔4x−5x≥10+13+6

⇔−x≥29⇔−x≥29

⇔x≥−29

tick và theo dõi giúp mình nha

Mộc Miên
Xem chi tiết
Đạt Đỗ
Xem chi tiết
missing you =
17 tháng 7 2021 lúc 15:19

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

Ngô Thành Chung
Xem chi tiết
Yuzu
3 tháng 7 2019 lúc 19:53

a.

\(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\ge2\forall x\)

\(x\ge1\) nên GTNN của biểu thức trên bằng 11 khi x = 1

b.

\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\forall x\)

\(x\ge2\) nên GTNN của biểu thức trên bằng 5 khi x=2

c.

\(x^2-3x+5=x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\forall x\)

\(x\ge2\) nên GTNN của biểu thức trên bằng 3 khi x = 2