cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
giải phương trình qui về phương trình tích
a/x\(^2\)+3x=0
b/x-2x\(^2\)=0
c/(x-7)(2x+3)=x(x-7)
d/(x-2)(x+3)=(x-2)(3x-1)
a: =>x(x+3)=0
=>x=0 hoặc x=-3
b: =>x(1-2x)=0
=>x=0 hoặc x=1/2
c: =>(x-7)(2x+3-x)=0
=>(x-7)(x+3)=0
=>x=7 hoặc x=-3
d: =>(x-2)(3x-1-x-3)=0
=>(x-2)(2x-4)=0
=>x=2
a)
`x^2 +3x=0`
`<=>x(x+3)=0`
\(< =>\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b)
`x-2x^2 =0`
`<=>x(1-2x)=0`
\(< =>\left[{}\begin{matrix}x=0\\1-2x=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
c)
`(x-7)(2x+3)=x(x-7)`
`<=>(x-7)(2x+3)-x(x-7)=0`
`<=>(x-7)(2x+3-x)=0`
`<=>(x-7)(x+3)=0`
\(< =>\left[{}\begin{matrix}x-7=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
d)
`(x-2)(x+3)=(x-2)(3x-1)`
`<=>(x-2)(x+3)-(x-2)(3x-1)=0`
`<=>(x-2)(x+3-3x+1)=0`
`<=>(x-2)(-2x+4)=0`
\(< =>\left[{}\begin{matrix}x-2=0\\-2x+4=0\end{matrix}\right.\\ < =>x=2\)
a)\(x^2+3x=0\)
<=>x(x+3)=0
x=0 hoặc x+3=0
x=0 hoặc x=-3
b)x-2x2=0
x(1-2x)=0
x=0 hoặc 1-2x=0
x=0 hoặc x=0,5
c)(x-7)(2x+3)=4(x-7)
(x-7)(2x+3)-4(x-7)=0
(x-7)(2x+3-4)=0
x-7=0 hoặc 2x+3-4=0
x=7 hoặc x=0,5
d)(x-2)(x+3)=(x-2)(3x-1)
(x-2)(x+3)-(x-2)(3x-1)=0
(x-2)(x+3-3x+1)=0
x-2=0 hoặc x+3-3x+1=0
x=2 hoặc x-3x=-3-1
-2x=-4
x=2
1.Giải các phương trình sau : a,7x+35=0 b, 8-x/x-7 -8 =1/x-7 2.giải bất phương trình sau : 18-3x(1-x)_< 3x^2-3x
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
1.
\(a,7x+35=0\\ \Rightarrow7x=-35\\ \Rightarrow x=-5\\ b,ĐKXĐ:x\ne7\\ \dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\\ \Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{8\left(x-7\right)}{x-7}-\dfrac{1}{x-7}=0\\ \Leftrightarrow\dfrac{8-x-8x+56-1}{x-7}=0\\ \Rightarrow-9x+63=0\\ \Leftrightarrow-9x=-63\\ \Leftrightarrow x=7\left(ktm\right)\)
2.đề thiếu
Giải phương trình: x²+2013√2(x²+2)=2023√x²-3x+2 -3x-2
Giải phương trình:
\(\dfrac{x}{x^2-x-2}+\dfrac{3x}{x^2+3x-2}=1\)
ĐKXĐ: \(x\notin\left\{2;-1;\dfrac{-3\pm\sqrt{17}}{2}\right\}\)
\(\dfrac{x}{x^2-x-2}+\dfrac{3x}{x^2+3x-2}=1\)
=>\(\dfrac{x\left(x^2+3x-2\right)+3x\left(x^2-x-2\right)}{\left(x^2-x-2\right)\left(x^2+3x-2\right)}=1\)
=>\(\dfrac{x^3+3x^2-2x+3x^3-3x^2-6x}{\left(x^2-2\right)^2+2x\left(x^2-2\right)-3x^2}=1\)
=>\(4x^3-8x=\left(x^2-2\right)^2+2x\left(x^2-2\right)-3x^2\)
=>\(4x\left(x^2-2\right)=\left(x^2-2\right)^2+2x\left(x^2-2\right)-3x^2\)
=>\(\left(x^2-2\right)^2-2x\left(x^2-2\right)-3x^2=0\)
=>\(\left(x^2-2\right)^2-3x\left(x^2-2\right)+x\left(x^2-2\right)-3x^2=0\)
=>\(\left(x^2-2\right)\left(x^2-2-3x\right)+x\left(x^2-2-3x\right)=0\)
=>\(\left(x^2+x-2\right)\left(x^2-3x-2\right)=0\)
=>\(\left(x+2\right)\left(x-1\right)\left(x^2-3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\\x^2-3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(nhận\right)\\x=1\left(nhận\right)\\x=\dfrac{3\pm\sqrt{17}}{2}\left(nhận\right)\end{matrix}\right.\)
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Giải phương trình : (x^2+3x+2)(x^2+3x+3)-2
Giải phương trình:
a ) | x – 2 | = | 3 x | b ) | x – 2 | = 3 x .
a) |x – 2| = |3x| ⇔ x – 2 = 3x hoặc x – 2 = –3x
⇔ 2x = –2 hoặc 4x = 2 ⇔ x = –1 hoặc x = 1/2
Tập nghiệm: S = {-1;1/2}
b) Điều kiện: 3x ≥ 0 ⇔ x ≥ 0. Khi đó:
|x – 2| = 3x
⇔ x – 2 = 3x hoặc x – 2 = –3x
⇔ 2x = –2 hoặc 4x = 2
⇔ x = –1 hoặc x = 1/2
Vì x ≥ 0, nên ta lấy x = 1/2. Tập nghiệm: S = 1/2.
Giải hệ phương trình: \(\hept{\begin{cases}x^2+y^2+xy=9\\x+y+xy=3\end{cases}}\)
Giải phương trình \(\sqrt[3]{x^2+2}+\sqrt[3]{4x^2+3x-2}=\sqrt[3]{3x^2+x+5}+\sqrt[3]{2x^2+x-5}\)
Giải phương trình \(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
Câu 3 :
ĐKXĐ : \(x\ge1\)
\(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow3\left[x^2-\left(x-1\right)\right]=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow3\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow\left(x+\sqrt{x-1}\right)\left(x+\sqrt{x-1}-3x+3\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x-1}\right)\left(4\sqrt{x-1}-2x\right)=0\)
Tới đây thì dễ rồi ^^