Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà UwU
Xem chi tiết
ILoveMath
18 tháng 11 2021 lúc 20:47

a, ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{3}{2}.2\sqrt{1+3x}-\dfrac{5}{3}.3\sqrt{1+3x}-\dfrac{1}{4}.4\sqrt{1+3x}=1\\ \Leftrightarrow3\sqrt{1+3x}-5\sqrt{1+3x}-\sqrt{1+3x}=1\\ \Leftrightarrow-3\sqrt{1+3x}=1\\ \Leftrightarrow\sqrt{1+3x}=-\dfrac{1}{3}\left(vô.lí\right)\)

b, \(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\\ \Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Lấp La Lấp Lánh
18 tháng 11 2021 lúc 20:47

a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(pt\Leftrightarrow3\sqrt{3x+1}-5\sqrt{3x+1}-\sqrt{3x+1}=1\)

\(\Leftrightarrow-3\sqrt{3x+1}=1\Leftrightarrow\sqrt{3x+1}=-\dfrac{1}{3}\left(VLý\right)\)

Vậy \(S=\varnothing\)

b) \(pt\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Minh Bình
Xem chi tiết

a: \(x^3+8x=5x^2+4\)

=>\(x^3-5x^2+8x-4=0\)

=>\(x^3-x^2-4x^2+4x+4x-4=0\)

=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2=0\)

=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: \(x^3+3x^2=x+6\)

=>\(x^3+3x^2-x-6=0\)

=>\(x^3+2x^2+x^2+2x-3x-6=0\)

=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)

=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

3: ĐKXĐ: x>=0

\(2x+3\sqrt{x}=1\)

=>\(2x+3\sqrt{x}-1=0\)

=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)

=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)

=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)

=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)

=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)

4: \(x^4+4x^2+1=3x^3+3x\)

=>\(x^4-3x^3+4x^2-3x+1=0\)

=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)

=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)

=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Nguyễn Việt Lâm
16 tháng 1 lúc 20:28

a.

\(x^3+8x=5x^2+4\)

\(\Leftrightarrow x^3-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b.

\(x^3+3x^2-x-6=0\)

\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)

\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 1 lúc 20:33

c.

\(2x+3\sqrt{x}+1=0\)

ĐKXĐ: \(x\ge0\)

Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)

\(\Rightarrow2x+3\sqrt{x}+1>0\)

Pt đã cho vô nghiệm

d.

\(x^4+4x^2+1=3x^3+3x\)

\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)

\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)

Đặt \(x+\dfrac{1}{x}=t\)

\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)

\(\Rightarrow x=1\)

thiyy
Xem chi tiết
Trần Vũ Minh Huy
6 tháng 10 2023 lúc 22:30

a)√x2−9 - 3√x−3 =0

<=> (√x-3)(√x+3)-3√x-3=0

<=> (√x-3)(√x+3-3)=0

<=> (√x-3)√x=0

<=> √x-3=0

<=>x=9

b)√4x2−12x+9=x - 3

<=> √(2x -3)=x-3

<=> 2x-3=x-3

<=>2x-x=-3+3

<=>x=0

c)√x2+6x+9=3x-1

<=> √(x+3)=3x-1

<=> x+3=3x-1

<=> -2x=-4

<=>  x=2

Nhớ cho mình 1 tim nha bạn

Akai Haruma
7 tháng 10 2023 lúc 19:11

Lời giải:

a. ĐKXĐ: $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-3)(x+3)}-3\sqrt{x-3}=0$

$\Leftrightarrow \sqrt{x-3}(\sqrt{x+3}-3)=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}-3=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}=3$

$\Leftrightarrow x=3$ hoặc $x=6$ (tm)

b.

PT \(\Rightarrow \left\{\begin{matrix} x-3\geq 0\\ 4x^2-12x+9=(x-3)^2=x^2-6x+9\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x^2-6x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x(x-2)=0\end{matrix}\right.\)

$\Rightarrow$ không có giá trị $x$ nào thỏa mãn 

Vậy pt vô nghiệm.

c.

PT \(\Rightarrow \left\{\begin{matrix} 3x-1\geq 0\\ x^2+6x+9=(3x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ x^2+6x+9=9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 8x^2-12x-8=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 4(x-2)(2x+1)=0\end{matrix}\right.\Leftrightarrow x=2\)

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Lê Hương Giang
Xem chi tiết
Akai Haruma
24 tháng 8 2021 lúc 18:13

a. ĐKXĐ: $x\geq 2$ hoặc $x=1$

PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$

$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)

b.

PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$

$\Leftrightarrow |x-2|=|2x-3|$

\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)

Akai Haruma
24 tháng 8 2021 lúc 18:14

c. ĐKXĐ: $x=2$ hoặc $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)

d.

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 0:01

a: Ta có: \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)

\(\Leftrightarrow x^2-3x+2=x-1\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

b: Ta có: \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-2\\2x-3=-x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)

c: Ta có: \(\sqrt{x^2-5x+6}=\sqrt{x-2}\)

\(\Leftrightarrow x^2-5x+6=x-2\)

\(\Leftrightarrow x^2-6x+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Quynh Existn
Xem chi tiết
missing you =
10 tháng 7 2021 lúc 10:19

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 10:31

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)

illumina
Xem chi tiết
2611
20 tháng 5 2023 lúc 20:12

`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12`     `ĐK: x >= 0`

`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`

`<=>12\sqrt{3x}=12`

`<=>\sqrt{3x}=1`

`<=>3x=1<=>x=1/3` (t/m)

`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36`   `ĐK: x >= -1`

`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`

`<=>12\sqrt{x+1}=36`

`<=>\sqrt{x+1}=3`

`<=>x+1=9`

`<=>x=8` (t/m)

✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 10:56

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:41

a) Bình phương hai vế ta được

\(2{x^2} - 3x - 1 = 2x - 3\)

\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)

b) Bình phương hai vế ta được

\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

c) \(\sqrt {x + 9}  = 2x - 3\)(*)

Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)

Bình phương hai vế của (*) ta được:

\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)

d) \(\sqrt { - {x^2} + 4x - 2}  = 2 - x\)(**)

Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)

Bình phương hai vế của (**) ta được:

\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)