cho \(x\ge1\). tìm GTNN của \(T=x-\sqrt{x-1}-3\sqrt{x+7}+28\)
Cho \(1\le x\), tìm GTNN của biểu thức \(P=x-\sqrt{x-1}-3\sqrt{x+7}+28\)
Cho \(x\ge1;y\ge1\) và \(3\sqrt{x-1}+4\sqrt{y-1}=5\)
Tính GTNN của P=x+y
theo bất đẳng thức bunhiacopxki ta có
3\(\sqrt{x-1}\)+4\(\sqrt{y-1}\)\(\le\)\(\sqrt{\left(3^2+4^2\right)\left(x-1+y-1\right)}\)=5\(\sqrt{x+y-2}\)
<=>1\(\le\sqrt{x+y-2}\)
<=>1\(\le\)x+y-2
<=>x+y\(\ge\)3
dùng bất đẳng thức Bunyakovsky rồi giả phương trình là xong đó bạn
Cho \(x\ge1\).Tìm GTNN của A= \(\sqrt{x-1}+\sqrt{2x^2-5x+7}\)
Áp dụng bất đẳng thức (2) ta có
A = \(\sqrt{x-1}+\sqrt{2x^2-5x+7}\)
\(\ge\sqrt{2x^2-4x+6}=\sqrt{2\left(x-1\right)^2+4\ge2}\)
Dấu "=" xảy ra khi x = 1
Vậy MinA = 2 khi x = 1
Cbht
Cho \(x\ge1.\)Tìm GTNN của \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\cdot\sqrt{x}\)
\(A=\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\)
\(\Rightarrow x+\left(1-A\right)\sqrt{x}+A=0\)
\(\Rightarrow\left(1-A\right)^2-4A\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}A\le3-2\sqrt{2}\\A\ge3+2\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow A_{min}=3+2\sqrt{2}\)
Tìm GTNN của \(y=\frac{x+3\sqrt{x-1}+1}{x+4\sqrt{x-1}+2}\left(x\ge1\right)\)
\(y=\frac{x-1+3\sqrt{x-1}+2}{x-1+4\sqrt{x-1}+3}\)
đặt x-1=a(a>=0)
=>\(y=\frac{a+3\sqrt{a}+2}{a+4\sqrt{a}+3}\)
=>\(\left(y-1\right)a+\left(4y-3\right)\sqrt{a}+3y-2=0\)
đến đây dùng pp tìm miền giá trị tìm y là ra
https://loga.vn/bai-viet/ve-phuong-phap-mien-gia-tri-de-tim-gtln-gtnn-4059
Cho \(x\ge1;y\ge1\) .Tìm GTNN của biểu thức:
\(A=\frac{x}{\sqrt{y}-1}+\frac{y}{\sqrt{x}-1}\)
Lời giải:
ĐK phải là $x,y>1$. Nếu $x,y=1$ thì vi phạm ĐKXĐ rồi bạn nhé.
Áp dụng BĐT AM-GM cho các số dương:
\(\frac{x}{\sqrt{y}-1}+4(\sqrt{y}-1)\geq 4\sqrt{x}\)
\(\frac{y}{\sqrt{x}-1}+4(\sqrt{x}-1)\geq 4\sqrt{y}\)
Cộng theo vế và rút gọn ta có:
\(A\geq 8\)
Vậy GTNN của $A$ là $8$. Dấu "=' xảy ra khi $x=y=4$
Cho: \(A=\dfrac{3\sqrt{x}}{-x-5\sqrt{x}-1}\)
a) Tìm x biết \(A=\dfrac{2}{3}\)
b) Tìm A biết \(x=7-2\sqrt{6}\)
c) Tìm GTNN của A
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTNN của biểu thức P=
\(\sqrt{x-1}\) + \(2\sqrt{y-4}\) + \(3\sqrt{z-9}\)
Biểu thức này chỉ có GTLN, ko có GTNN
B1: Cho x;y là 2 số dương thay đổi .Tìm GTNN của \(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
B2: Cho \(x\ge-1,y\ge1\) thỏa mãn \(\sqrt{x+1}+\sqrt{y-1}=\sqrt{2\left(x-y\right)^2+10x-6y+8}\).
Tìm GTNN của \(P=x^4+y^2-5\left(x+y\right)+2020\)
B3: Tìm GTNN của \(M=\dfrac{x+12}{\sqrt{x}+2}\)