Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
2 tháng 8 2023 lúc 10:29

Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)

\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))

\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\) (do \(b\ne d\))

 Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)

 

 

Lương Đại
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2022 lúc 20:19

Theo tính chất dãy tỉ số bằng nhau, đặt:

\(\dfrac{a}{A}=\dfrac{b}{B}=\dfrac{c}{C}=\dfrac{d}{D}=\dfrac{a+b+c+d}{A+B+C+D}=k>0\)

\(\Rightarrow a=kA;b=kB;c=kC;d=kD;a+b+c+d=k\left(A+B+C+D\right)\)

Do đó:

\(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{kA^2}+\sqrt{kB^2}+\sqrt{kC^2}+\sqrt{kD^2}\)

\(=\sqrt{k}\left(A+B+C+D\right)\) (1)

\(\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}=\sqrt{k\left(A+B+C+D\right)^2}=\sqrt{k}\left(A+B+C+D\right)\) (2)

Từ (1);(2) suy ra điều phải c/m

Nancy Drew
Xem chi tiết
Nguyễn  Mai Trang b
11 tháng 6 2017 lúc 14:23

\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\left(1\right)\\ \dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\left(2\right)\\ \dfrac{c}{c+d+a}>\dfrac{c}{a+b+c+d}\left(3\right)\\ \dfrac{d}{d+a+b}>\dfrac{d}{a+b+c+d}\left(4\right)\)

Từ (1) (2) (3) (4) => \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a+b+c+d}{a+b+c+d}\\ \Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>1\left(4\right)\)

Mặt khác

\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}=\left(\dfrac{a}{a+b+c}+\dfrac{c}{c+d+a}\right)+\left(\dfrac{b}{b+c+d}+\dfrac{d}{d+a+b}\right)\)

\(\dfrac{a}{a+b+c}+\dfrac{c}{c+d+a}< \dfrac{a}{a+c}+\dfrac{c}{c+a}\) ; \(\dfrac{b}{b+c+d}+\dfrac{d}{d+a+b}< \dfrac{b}{b+d}+\dfrac{d}{b+d}\)

=>\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+d}+\dfrac{b}{b+d}\right)=2\)(5)

Từ (4) (5) => \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)

Vậy B không phải là số nguyên

Nhật Minh
11 tháng 6 2017 lúc 13:21

1 < B < 2 => KL

Trần Hoàng Minh
22 tháng 10 2017 lúc 16:30

Mình đã trả lời câu này ở Câu hỏi của Phạm Mỹ Dung bn nhé. Bn cí thể vào đó tham khảo cách lm của mình

Chúc bn học tốt banhbanhbanhbanhbanh

Kamato Heiji
Xem chi tiết
Hồng Quang
15 tháng 2 2021 lúc 13:01

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

Hồng Quang
15 tháng 2 2021 lúc 13:11

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

yeens
Xem chi tiết
Nguyễn Văn Phúc Lâm
Xem chi tiết
Akai Haruma
26 tháng 12 2023 lúc 17:17

Lời giải:

Với $a,b,c>0$ ta có:

$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$

Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$

$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$

Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$

Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$

Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.

Bùi Ngọc Minh
Xem chi tiết
Soccer Kunkun
17 tháng 3 2017 lúc 21:06

ta có:\(\dfrac{a}{b}< \dfrac{c}{d}=>a.d< c.b\)

ad+ab<cb+ab

hay a.(d+b)<b.(c+a)

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)(1)

ad<cb

=>ad+dc<bc+cd

d.(a+c)<c.(b+d)

=>\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\)(2)

từ (1) và (2) ta có :

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)\(< \dfrac{c}{d}\)

Tick đi ahihi :D

Dương Khánh Linh
17 tháng 3 2017 lúc 21:08

nếu thì ???????????????????

gianroi

37-Đặng Thị Anh Thư-7A2...
Xem chi tiết
Nguyễn Phương Anh
26 tháng 1 2022 lúc 9:31

Do  a < b < c < d < m < n 
=> 2c < c + d 
m< n => 2m < m+ n 
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)