\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\left(1\right)\\ \dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\left(2\right)\\ \dfrac{c}{c+d+a}>\dfrac{c}{a+b+c+d}\left(3\right)\\ \dfrac{d}{d+a+b}>\dfrac{d}{a+b+c+d}\left(4\right)\)
Từ (1) (2) (3) (4) => \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a+b+c+d}{a+b+c+d}\\ \Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>1\left(4\right)\)
Mặt khác
\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}=\left(\dfrac{a}{a+b+c}+\dfrac{c}{c+d+a}\right)+\left(\dfrac{b}{b+c+d}+\dfrac{d}{d+a+b}\right)\)
mà \(\dfrac{a}{a+b+c}+\dfrac{c}{c+d+a}< \dfrac{a}{a+c}+\dfrac{c}{c+a}\) ; \(\dfrac{b}{b+c+d}+\dfrac{d}{d+a+b}< \dfrac{b}{b+d}+\dfrac{d}{b+d}\)
=>\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+d}+\dfrac{b}{b+d}\right)=2\)(5)
Từ (4) (5) => \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)
Vậy B không phải là số nguyên
Mình đã trả lời câu này ở Câu hỏi của Phạm Mỹ Dung bn nhé. Bn cí thể vào đó tham khảo cách lm của mình
Chúc bn học tốt