Cho (C): y = x 2 + m x 2 - x + 1 , biết (C) có cực đại, cực tiểu. Chọn phát biểu đúng.
Cho x, y là 2 số nguyên dương mà x^2 + y^2 + 10 chia hết cho xy.
a) C/m x, y là 2 số lẻ và (x,y)=1
b) C/m k=(x^2 + y^2 + 10)/xy chia hết cho 4 và k >=12
a.
Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)
Mà \(\left(x^2+y^2+10\right)⋮xy\) nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)
Ta có \(xy⋮4\)
Do đó \(\left(x^2+y^2+10\right)⋮4\).
Mà \(x^2⋮4,y^2⋮4\) nên \(10⋮4\) (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số lẻ.
Đặt \(d=ƯCLN\left(x,y\right)\)
Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)
Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)
Vậy \(ƯCLN\left(x,y\right)=1\)
b. Theo đề suy ra \(kxy=x^2+y^2+10\)
Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)
Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)
Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)
Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)
Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)
Nên \(\left(x^2+y^2+10\right)⋮3\) \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.
\(\RightarrowƯCLN\left(xy,3\right)=1\), \(x^2\) và \(y^2\) chia cho 3 dư 1.
Do đó \(\left(x^2+y^2+10\right)⋮3\) nên \(kxy⋮3\) mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)
\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)
Mà \(k\in N\)* nên \(k\ge12\)
Cho x, y là 2 số nguyên dương mà x^2 + y^2 + 10 chia hết cho xy.
a) C/m x, y là 2 số lẻ và (x,y)=1
b) C/m k=(x^2 + y^2 + 10)/xy chia hết cho 4 và k >=12
1.Tìm x, y thoả mãn
\(\left|x\right|+\left|y\right|=6v\text{à}x^2+y^2=26\)
2.Cho P= x2y2
Nếu x, y là các số thực dương làm cho P xác định và thoả mãn:
x+y=2. Hãy tìm GTLN của P
1. Đặt \(\left\{{}\begin{matrix}\left|x\right|=a\ge0\\\left|y\right|=b\ge0\end{matrix}\right.\) \(\Rightarrow a+b=6\Rightarrow b=6-a\)
Thế vào \(a^2+b^2=26\)
\(\Rightarrow a^2+\left(6-a\right)^2=26\)
\(\Leftrightarrow2a^2-12a+10=0\Rightarrow\left[{}\begin{matrix}a=1\\a=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=5\\b=1\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(5;1\right);\left(-1;5\right);\left(5;-1\right);\left(1;-5\right);\left(-5;1\right);\left(-1;-5\right);\left(-5;-1\right)\)
2. Ta có: \(\left(x+y\right)^2\ge4xy\) \(\forall x;y\)
\(\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow P=x^2y^2\le\frac{\left(x+y\right)^4}{16}=1\)
Dấu "=" xảy ra khi \(x=y=1\)
cho x,y là các số thực thỏa mãn x>2 và x+y >3 tìm gtnn của p=x^2+y^2+1/x+1/x+y
Cho các số thực x, y thỏa mãn x^2+y^2=4.tìm gtln của xy/x+y+2
1.Tìm các số nguyên x,y sao cho x.y=9 và x<y
2. Tìm các số nguyên x,y sao cho (x-6).(y+2)=7
1. Ta có : xy=9 (x<y)
=> x và y thuộc Ư(9)={-9;-3;-1;1;3;9}
Ta có bảng sau :
x | -9 | 1 |
y | -1 | 9 |
Vậy (x;y) thuộc {(-9;-1;);(-1;9)}
2. Ta có ; (x-6) (y+2)=7
=> x-6 và y+2 thuộc Ư(7)={-7;-1;1;7}
Ta có bảng sau :
x-6 | -7 | -1 | 1 | 7 |
x | -1 | 5 | 7 | 13 |
y+2 | -1 | -7 | 7 | 1 |
y | -3 | -9 | 5 | -1 |
Vậy (x;y) thuộc {(-1;-3);(5;-9);(7;5);(13;-1)}
Cho các số x , y thỏa mãn x + y ≠0
C/m : \(x^2+y^2+\left(\dfrac{1+xy}{x+y}\right)^2\ge2\)
Cho parabol $(P):\,\,y={{x}^{2}}$ và đường thẳng $d:\,y=2x-m$ (với $m$ là tham số). Tìm tất cả các giá trị của tham số $m$ để đường thẳng $\left( d \right)$ cắt parabol $(P)$ tại hai điểm phân biệt có $A\left( {{x}_{1}},{{y}_{1}} \right),\,\,B\left( {{x}_{2}},{{y}_{2}} \right)$ sao cho ${{y}_{1}}+{{y}_{2}}+{{x}_{1}}^{2}{{x}_{2}}^{2}=6\left( {{x}_{1}}+{{x}_{2}} \right).$
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=2x-m\Leftrightarrow x^2-2x+m=0\) (*)
Pt (*) có \(\Delta'=\left(-1\right)^2-1.m=1-m\)
Để (d) cắt (P) tại 2 điểm phân biệt \(x_1,x_2\) thì pt (*) phải có 2 nghiệm phân biệt \(x_1,x_2\) \(\Leftrightarrow\Delta'>0\Leftrightarrow1-m>0\Leftrightarrow m< 1\)
Khi \(m< 1\), áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)\(\Rightarrow y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2^2-2m=4-2m\)
Do đó để \(y_1+y_2+x_1^2x_2^2=6\left(x_1+x_2\right)\)\(\Leftrightarrow4-2m+m^2=6.2\)\(\Leftrightarrow m^2-2m-8=0\) (1)
pt (1) có \(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)
Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}m_1=\dfrac{-\left(-1\right)+\sqrt{9}}{1}=4\\m_2=\dfrac{-\left(-1\right)-\sqrt{9}}{1}=-2\end{matrix}\right.\)
Như vậy để (d) cắt (P) tại 2 điểm có hoành độ và tung độ thỏa mãn yêu cầu đề bài thì \(\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
Mà do \(m< 1\) nên ta chỉ nhận trường hợp \(m=-2\)
Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ và tung độ thỏa mãn đề bài thì \(m=-2\)
Phương trình hoành độ giao điểm của và là:
(1)
Ta có: .
Điều kiện để cắt tại hai điểm phân biệt là phương trình hoành độ giao điểm của và có hai nghiệm phân biệt.
Suy ra (*).
Khi đó , là các hoành độ giao điểm của và nên , là các nghiệm của phương trình hoành độ của và .
Theo hệ thức Vi-et ta có:
Khi đó,
Vậy là giá trị cần tìm.
Phương trình hoành độ giao điểm của và là:
(1)
Ta có: .
Điều kiện để cắt tại hai điểm phân biệt là phương trình hoành độ giao điểm của và có hai nghiệm phân biệt.
Suy ra (*).
Khi đó , là các hoành độ giao điểm của và nên , là các nghiệm của phương trình hoành độ của và .
Theo hệ thức Vi-et ta có:
Khi đó,
Vậy là giá trị cần tìm.
1. Tìm các số nguyên tố x,y sao cho: 51x + 26y = 2000
2. Tìm số tự nhiên x, y biết: 7(x - 2004)^2 = 23 - y^2
3. Tìm x,y nguyên biết: 2xy - x -y=2
4. tìm x, biết |x+1,1| +|x+1,2|+|x+1,3|+|x+1,4|=5x
5, Tìm các số x,y,z biết: x/2=y/3=z/4 và x^2 + y^2 + z^2 = 116
6. Tìm các số x,y,z biết: 2x-3y/2=4y-2z/3=3z-4x/4 và 3x+2y+z=17
1, https://hoc24.vn//hoi-dap/question/91350.html
Bài 3:
=>2xy-x-y-2=0
=>x(2y-1)-y+0,5-2,5=0
=>x(2y-1)-(y-0,5)=2,5
=>2x(2y-1)-(2y-1)=5
=>(2y-1)(2x-1)=5
=>\(\left(2x-1;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(0;-2\right);\left(-2;0\right)\right\}\)
Câu 5:
Đặt x/2=y/3=z/4=k
=>x=2k; y=3k; z=4k
x^2+y^2+z^2=116
=>4k^2+9k^2+16k^2=116
=>29k^2=116
=>k^2=4
TH1: k=2
=>x=4; y=6; z=8
TH2: k=-2
=>x=-4; y=-6; z=-8