Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanh thuý
Xem chi tiết
thanh thuý
4 tháng 11 2021 lúc 22:10

mọi người giải giúp e với ạ :3

 

Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 22:11

Bài 1:

b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)

Võ Tuấn Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 6:14

Tọa độ giao điểm của (d) và (d') là:

\(\left\{{}\begin{matrix}\dfrac{3}{2}x+1=x+2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=1\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1:\dfrac{1}{2}=2\\y=2+2=4\end{matrix}\right.\)

Thay x=2 và y=4 vào (d''), ta được:

(k+3)*2-2=4

=>2(k+3)=6

=>k+3=3

=>k=0

thành đạt nguyễn
Xem chi tiết
Mai Ngô
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2019 lúc 18:24

Phương trình hoành độ giao điểm:

\(x^2+\left(m+1\right)x-m^2+1=0\)

\(\Delta=\left(m+1\right)^2+4\left(m^2-1\right)=5m^2+2m-3\)

a/ Để d tiếp xúc (P) thì pt có nghiệm kép

\(\Rightarrow\Delta=0\Rightarrow5m^2+2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\frac{3}{5}\end{matrix}\right.\)

b/ Để pt có nghiệm \(\Rightarrow5m^2+2m-3\ge0\Rightarrow\left[{}\begin{matrix}m\le-1\\m\ge\frac{5}{3}\end{matrix}\right.\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-m-1\\x_1x_2=-m^2+1\end{matrix}\right.\)

\(x_1y_2+x_2y_1=1\)

\(\Leftrightarrow x_1\left(-x_2^2\right)+x_2\left(-x_1^2\right)=1\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=-1\)

\(\Leftrightarrow\left(-m-1\right)\left(-m^2+1\right)=-1\)

\(\Leftrightarrow m^3+m^2-m=0\)

\(\Leftrightarrow m\left(m^2+m-1\right)=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=\frac{-1+\sqrt{5}}{2}\left(l\right)\\m=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Cù Thị Thu Trang
Xem chi tiết
Nguyễn Minh Quang
21 tháng 3 2022 lúc 11:09

Xét phương trình hoành độ giao điểm ta có 

\(x^2=\left(2m+1\right)x-2m\Leftrightarrow\left(x-2m\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m\end{cases}}\)

để p cắt d tại hai điểm phân biệt thì \(2m\ne1\Leftrightarrow m\ne\frac{1}{2}\).

ta có \(\hept{\begin{cases}x_1=1\Rightarrow y_1=x_1^2=1\\x_2=2m\Rightarrow y_2=x_2^2=4m^2\end{cases}}\)Vậy \(y_1+y_2-x_1x_2=1+4m^2-2m=1\Leftrightarrow4m^2-2m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{1}{2}\end{cases}}\)

Kết hợp điều kiện hai nghiệm phân biệt ta có m =0 

Khách vãng lai đã xóa
Cù Thị Thu Trang
24 tháng 3 2022 lúc 10:08

Xét PT hoành độ giao điểm của (P) và (d)

x2=(2m+1)x-2m

⇔x2-(2m+1)x+2m=0

a=1; b=-2m-1; c=2m
a+b+c=a+(-2m-1)+2m=0 Nên PT (1) có 2 nghiệm

x1=1 và x2=2m

*) với x1=1 ⇒y1=1

*) với x2=2m ⇒y2=(2m)2=4m2

Thay x1, x2, y1, y2 vào y1+y2-x1x2=1, ta có:

1+4m2-2m=1

⇔4m2-2m=0⇔2m(2m-1)=0 ⇔m=0 và m=\(\dfrac{1}{2}\)

Vậy với m=0 và 1/2 thì ......

 

 

Khách vãng lai đã xóa
Võ Tuấn Nguyên
Xem chi tiết
Akai Haruma
30 tháng 9 2023 lúc 10:35

Đề bị lỗi hiển thị rồi bạn. Bạn xem lại.

Tên Của Tôi
Xem chi tiết
Lí Vật
Xem chi tiết
Trần Mun
Xem chi tiết

a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne-2\end{matrix}\right.\)

=>m=2

b: Để (d) trùng với (d2) thì

\(\left\{{}\begin{matrix}m^2-2=-1\\m-1=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\m=-1\end{matrix}\right.\)

=>m=-1

c:

Để (d) cắt (d3) thì \(m^2-2\ne3\)

=>\(m^2\ne5\)

=>\(m\ne\pm\sqrt{5}\)

Thay x=-1 vào y=3x-2, ta được:

\(y=3\left(-1\right)-2=-5\)

Thay x=-1 và y=-5 vào (d), ta được:

\(-\left(m^2-2\right)+m-1=-5\)

=>\(-m^2+2+m-1+5=0\)

=>\(-m^2+m+6=0\)

=>\(m^2-m-6=0\)

=>(m-3)(m+2)=0

=>\(\left[{}\begin{matrix}m-3=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\left(nhận\right)\\m=-2\left(nhận\right)\end{matrix}\right.\)

d: Để (d) vuông góc với (d4) thì \(\dfrac{4}{5}\left(m^2-2\right)=-1\)

=>\(m^2-2=-1:\dfrac{4}{5}=-\dfrac{5}{4}\)

=>\(m^2=\dfrac{3}{4}\)

=>\(m=\pm\dfrac{\sqrt{3}}{2}\)

Vô danh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:29

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:42

c. Bạn kiểm tra lại đề nhé.

b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 22:58

a.

\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)

Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)

b.

\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)

Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)

c.

Biểu thức này chỉ có min, ko có max

d.

\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)