Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
P. Ngà
Xem chi tiết
đấng ys
Xem chi tiết
Kirito-Kun
26 tháng 8 2021 lúc 15:56

m nào

đấng ys
26 tháng 8 2021 lúc 15:58

đề bài là tìm a nhé

 

trung dũng trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2021 lúc 22:29

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-3y=1\\x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4y=-8\\x+y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=9-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)

b) Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{1}\ne\dfrac{-m}{1}\)

\(\Leftrightarrow-m\ne1\)

hay \(m\ne-1\)

Vậy: Để hệ phương trình có nghiệm duy nhất thì \(m\ne-1\)

c) Để hệ phương trình có vô số nghiệm thì \(\dfrac{1}{1}=\dfrac{-m}{1}=\dfrac{1}{m^2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m=1\\m^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow m=-1\)

Vậy: Để hệ phương trình có vô số nghiệm thì m=-1

Min Suga
Xem chi tiết
Nguyễn Trọng Chiến
2 tháng 2 2021 lúc 17:14

a Để hpt có nghiệm \(\left(x;y\right)=\left(-2;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}-2+3m=4\\-2n+3=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m=6\\-2n=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=2\end{matrix}\right.\)

b Để hpt có vô số nghiệm \(\Leftrightarrow\dfrac{1}{n}=\dfrac{m}{1}=\dfrac{4}{-3}\) \(\left(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\right)\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{n}=-\dfrac{4}{3}\\m=-\dfrac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)

Vậy...

Anh Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 21:25

a: Vì m/1<>-m/1

neen hệ luôn có nghiệm

b: mx-y=2 và x+my=3

=>y=mx-2 và x+m(mx-2)=3

=>y=mx-2 và x(1+m^2)=5

=>x=5/m^2+1 và y=5m/m^2+1-2=(5m-2m^2-2)/m^2+1=(-2m^2+5m-2)/m^2+1

x>0; y>0

=>5>0 và -2m^2+5m-2>0

=>2m^2-5m+2<0

=>2m^2-4m-m+2<0

=>(m-2)(2m-1)<0

=>1/2<m<2

hoa thi
Xem chi tiết
Na Gaming
18 tháng 5 2022 lúc 19:26

lỗi hình

Pé Pïnʚɞ︵²⁰⁰⁴
18 tháng 5 2022 lúc 19:27

lx hìnk còi

nguyễn quỳnh chi
Xem chi tiết
Lê Thị Thanh Tân
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2021 lúc 10:01

Bài 1: 

a) Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Để P=2 thì \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)

\(\Leftrightarrow3\sqrt{x}=2\left(\sqrt{x}+2\right)\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=4\)

hay x=16(nhận)

Vậy: Để P=2 thì x=16

Hồng Phúc
3 tháng 1 2021 lúc 11:24

2.

a, \(m=3\), hệ phương trình trở thành:

\(\left\{{}\begin{matrix}x+3y=9\\3x-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=13\\y=\dfrac{3x-4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{23}{12}\end{matrix}\right.\)

b, \(\left(x;y\right)=\left(-1;3\right)\) là nghiệm của hệ, suy ra:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{10}{3}\\m=-13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại giá trị m thỏa mãn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 9 2018 lúc 5:05

Ta có

x + 2 y = m + 3 2 x − 3 y = m ⇔ 2 x + 4 y = 2 m + 6 2 x − 3 y = m ⇔ x + 2 y = m + 3 7 y = m + 6 ⇔ x = 5 m + 9 7 y = m + 6 7

Hệ phương trình có nghiệm duy nhất  ( x ;   y )   = 5 m + 9 7 ; m + 6 7  

Lại có x + y = −3 hay 5 m + 9 7 + m + 6 7 = − 3 ⇔ 5m + 9 + m + 6 = −21

⇔ 6m = −36 ⇔ m = −6

Vậy với m = −6 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y = −3

Đáp án: A

Lizy
Xem chi tiết

Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)(1)

Khi \(m\notin\left\{2;-2\right\}\) thì hệ phương trình tương đương với:

\(\left\{{}\begin{matrix}x=3-my\\mx+4y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3-my\\m\cdot\left(3-my\right)+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-my\\3m-m^2\cdot y+4y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3m-y\left(m^2-4\right)=6\\x=3-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(m^2-4\right)=3m-6\\x=3-my\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\\x=3-\dfrac{3m}{m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\x=\dfrac{3m+6-3m}{m+2}=\dfrac{6}{m+2}\end{matrix}\right.\)

Để x>1 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>1\\\dfrac{3}{m+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6-m-2}{m+2}>0\\m+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4-m}{m+2}>0\\m>-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{m-4}{m+2}< 0\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< 4\)

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}-2< m< 4\\m\ne2\end{matrix}\right.\)