Giá trị của số thực m sao cho lim x → − ∞ 2 x 2 − 1 m x + 3 x 3 + 4 x + 7 = 6 là
A. m = − 3
B. m = 3
C. m = 2
D. m = − 2
giá trị thực m sao cho lim (x-> \(-\infty\)) \(\left(\dfrac{\left(2x^2-1\right)\left(mx+3\right)}{x^3+4x+7}=6\right)\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2x^2-1\right)\left(mx+3\right)}{x^3+4x+7}=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2-\dfrac{1}{x^2}\right)\left(m+\dfrac{3}{x}\right)}{1+\dfrac{4}{x^2}+\dfrac{7}{x^3}}=2m\)
\(\Rightarrow2m=6\Rightarrow m=3\)
Cho biết : \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{ax^2+1}-bx-2}{x^3-3x+2}\left(a,b\in R\right)\) có kết quả là một số thực. Giá trị của biểu thức \(a^2+b^2\) ?
Trình bày công thức các thứ khá dài nên tôi thử nói hướng, nếu bạn hiểu đc và làm đc thì ok còn nếu k hiểu thì bảo mình, mình làm full cho
Bây giờ phân tích mẫu trước, ra (x-1)2(x+2)
Để cái lim này nó ra đc 1 số thực thì tử và mẫu cùng phải triệt tiêu (x-1)2 đi, tức là tử phải chia hết (x-1)2, tức là tử cũng phải có nghiệm kép x=1
Do đó \(\left\{{}\begin{matrix}f\left(1\right)=0\\f'\left(1\right)=0\end{matrix}\right.\)
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x − 1 x − m nghịch biến trên khoảng − ∞ ; 2 .
A. 1 , + ∞
B. 2 , + ∞
C. 2 , + ∞
D. 1 , + ∞
Đáp án là C
Tập xác định : D = R \{m}
Ta có : y ' = 1 − m x − m 2
Hàm số nghịch biến trên khoảng (−¥;2) khi và chỉ khi y' <0, "x < 2, tức là : 1 − m < 0 m ≥ 2 ⇔ m ≥ 2 . Vậy tập giá trị m cần tìm là [2; + ∞ )
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y=x^4-2\left(m-1\right)x^2+m-2\) đồng biến trên khoảng (1;3)
y'= \(4x^3-4\left(m-1\right)x\)
Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)
\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)
Vậy \(m\in\) (−\(\infty\);2]
Tìm tất cả các giá trị của tham số thực m sao cho hàm số f x = 2 x - m k h i x ≥ 0 m x + 2 k h i x < 0 liên tục trên ℝ .
A. m = 2
B. m = ± 2
C. m = -2
D. m = 0
Đáp án C.
Dễ thấy hàm số liên tục trên các khoảng 0 ; + ∞ và - ∞ ; 0 . Ta có:
f 0 = - m lim x → 0 + f x = - m lim x → 0 - f ( x ) = 2 . Để hàm số liên tục tại x = 0 thì lim x → 0 + f x = lim x → 0 - f x = f 0 ⇔ m = - 2 .
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x^2-mx-2m^2}{x-2}\) có tiệm cận đứng .
Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)
\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
trên đoạn [0;2023] có bao nhiêu giá trị nguyên của tham số a sao cho lim(\(\sqrt{9n^2+10n}-a.n\))=-\(\infty\)
\(lim\left(\sqrt{9n^2+10n}-an\right)=-\infty\)
\(\Leftrightarrow lim\dfrac{9n^2+10n-a^2n^2}{\sqrt{9n^2+10n}}=-\infty\)
\(\Leftrightarrow lim\dfrac{9-a^2+\dfrac{10}{n}}{\sqrt{\dfrac{9}{n^2}+\dfrac{10}{n^3}}}=-\infty\)
\(\Leftrightarrow\dfrac{9-a^2}{0}=-\infty\)
\(\Rightarrow a^2>9\)
\(\Leftrightarrow a>3\) \(\Rightarrow a\in\left[4;2023\right]\)
Tìm tất cả các giá trị thực của tham số m sao cho phương trình 2 x + 1 = x + m có nghiệm thực?
A. m ≥ 2
B. m ≤ 2
C. m ≥ 3
D. m ≤ 3
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y=\dfrac{x^2-\left(m-1\right)+2m-1}{x-m}\) tăng trên từng khoảng xác định của nó