Chứng minh đẳng thức: 2 x 2 + 3 xy + y 2 2 x 3 + x 2 y − 2 xy 2 − y 3 = 1 x − y với y ≠ − 2 x và y ≠ ± x .
chứng minh đẳng thức sau:
x^2y+2xy^2+y^3/ 2x^2+ xy- y^2= xy+ y^2/ 2x- y
bài 1 chứng minh các đẳng thức sau
\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\dfrac{1}{x-y}\)
\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)
Chứng minh đẳng thức sau :
a) x^3 - y^3 + xy ( x-y ) = ( x-y ) ( x+ y ) ^2
b) x^3 + y ^3 - xy ( x+y ) = ( x+ y )( x-y ) ^2
a)(x-y)(x^2+xy+y^2)+xy(x-y)
=(x-y)(x^2+2xy+y^2)
=(x-y)(x+y)^2
=> Đt trên Đ
b) CM tương tự nha
Chứng minh đẳng thức
1) (x-y) (x+y) =x^2-y^2
2) (x-y) (x^2+xy+y^2) =x^3-y^3
3) (x+y) (x^2-xy+y^2) =x^3+y^3
thực hiện nhân đa thức với đa thức ở vế trái xog rút gọn là nó = vế pải
1/ Biến đổi vế trái , ta có :
(x-y)(x+y)= x2+xy - xy-y2= x2-y2
=> (x-y) (x+y) =x2-y2
2/ Biến đổi vế trái , ta có :
(x-y) (x2+xy+y2)= x3+x2y+xy2-x2y-xy2-y3
= (x2y-x2y)+(xy2-xy2)+x3-y3=x3-y3
=> (x-y) (x2+xy+y2) =x3-y3
3/ / Biến đổi vế trái , ta có :
(x+y) (x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3
(-x2y+x2y) + ( xy2-xy2) + x3+y3= x3+y3
Chứng minh đẳng thức
a) x^3+y^3=(x+y)[(x-y)^2+xy]
b)x^3+y^3-xy(x+y)=(x+y)(x-y)^2
c) ( x+y)(x^2-xy+y^2)=(x+y)^3 - 3xy(x+y)
Chứng minh đẳng thức, bất đẳng thức: \(x^4+y^4+\left(x+y\right)^4=2.\left(x^2+xy+y^2\right)^2\)
Lời giải:
Ta có:
$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$
$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$
$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$
$=2(x^2+y^2+xy)^2$
Ta có đpcm.
chứng minh các đẳng thức
( x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4
\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\) ( đpcm )
chứng minh đẳng thức:
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=-2y^3\)
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x^3+x^2y+xy^2-yx^2-xy^2-y^3\right)\)\(-\left(x^3-x^2y+xy^2+yx^2-xy^2+y^3\right)\)
\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3-x^3+x^2y-xy^2-yx^2+xy^2-y^3\)
\(=-2y^3\)
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=-2y^3\)
\(x-y.x^2+xy+y^2-x-y.x^2-xy+y^2=-2y^3\)
\(\left(x+x-x-x\right)-\left(y.y-y\right).\left(x^2.x^2\right)+\left(y^2+y^2\right)=-2y^3\)
\(0-\left(2y-y\right).x^4+2y^2=-2y^3\)
\(0-y.x^4+2y^2=-2y^3\)
\(-y.y^2.x^4+2=-2y^3\)
\(-y^3.x^4+2=-2y^3\)
hình như mk lm sai mk sẽ lm lại cách # thử
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-y^3-\left(x^3+y^3\right)=-2y^3\)
(Áp dụng hằng đẳng thức)
Chứng minh đẳng thức sau :
\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{1}{x-y}\)
Ta phân tích mẫu:
\(x^3+2x^2y-xy^2-2y^3\)
\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)
\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)
\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)
Thay vào ta có:
\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)
Vậy ta có điều phải chứng minh
cho đẳng thức x^2-x+y^2-y=xy
chứng minh (\(\left(y-1\right)^2< \dfrac{4}{3}\)