Thực hiện phép chia các phân thức sau:
a) n 2 − 1 n 2 + 2 n − 15 : n 2 + 5 n + 4 n 2 − 10 n + 21 với n ≠ − 5 ; − 4 ; − 1 ; 3 ; 7 ;
b) x 4 − 8 xy 3 2 xy + 5 y 2 : x 3 + 2 x 2 y + 4 xy 2 2 x + 5 y với x ≠ 0 ; y ≠ 0 và x ≠ − 5 2 y .
Thực hiện các phép chia phân thức sau:
a) \(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\)
b) \(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\)
c) \(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\)
\(a,=\dfrac{5x}{4y^3}\times\left(\dfrac{-20y}{x^4}\right)=\dfrac{-100xy}{4x^4y^3}=\dfrac{-25}{x^3y^2}\\ b,=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x+4\right)}\times\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)
\(c,=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\times\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x+3\right)^2.\left(x^2+2x+4\right)}\)
a) \(\dfrac{5x}{4y^3}:\left(-\dfrac{x^4}{20y}\right)=\dfrac{5x}{4y^3}\cdot\left(-\dfrac{20y}{x^4}\right)=\dfrac{5\cdot-5}{y^2\cdot x^3}=\dfrac{-25}{x^3y^2}\)
b) \(\dfrac{x^2-16}{x+4}:\dfrac{2x-8}{x}=\left(x-4\right)\cdot\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)
c) \(\dfrac{2x+6}{x^3-8}:\dfrac{\left(x+3\right)^3}{2x-4}=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\cdot\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x^2+2x+4\right)\left(x+3\right)^2}\)
Thực hiện các phép chia đa thức sau:
a) (-5x3 + 15x2 + 18x) : (-5x)
b) (-2x5 – 4x3 + 3x2) : 2x2
a) (-5x3 + 15x2 + 18x) : (-5x)
= (-5x3) : (-5x) + 15x2 : (-5x) + 18x : (-5x)
= [(-5): (-5)] . (x3 : x) + [15 : (-5)] . (x2 : x) + [18 : (-5)]. (x : x)
= x2 – 3x - \(\dfrac{{18}}{5}\)
b) (-2x5 – 4x3 + 3x2) : 2x2
= (-2x5 : 2x2) + (-4x3 : 2x2) + (3x2 : 2x2)
= [(-2) : 2] . (x5 : x2) + [(-4) : 2] . (x3 : x2) + (3 : 2) . (x2 : x2)
= -x3 – 2x + \(\dfrac{3}{2}\)
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{a}{{a - 3}} - \dfrac{3}{{a + 3}}\) b) \(\dfrac{1}{{2x}} + \dfrac{2}{{{x^2}}}\) c) \(\dfrac{4}{{{x^2} - 1}} - \dfrac{2}{{{x^2} + x}}\)
`a, a/(a-3) - 3/(a+3) = (a(a+3) - 3(a-3))/(a^2-9)`
`= (a^2+9)/(a^2-9)`
`b, 1/(2x) + 2/x^2 = x/(2x^2) + 4/(2x^2) = (x+4)/(2x^2)`
`c, 4/(x^2-1) - 2/(x^2+x) = (4x)/(x(x-1)(x+1)) - (2(x-1))/(x(x+1)(x-1))`
`= (2x+2)/(x(x-1)(x+1)`
`= 2/(x(x-1))`
Thực hiện phép chia 0,5x5 + 3,2x3 – 2x2 cho 0,25xn trong mỗi trường hợp sau:
a) n = 2
b) n = 3
a) (0,5x5 + 3,2x3 – 2x2 ) : 0,25x2
= 0,5x5 : 0,25x2 + 3,2x3 : 0,25x2 - 2x2 : 0,25x2
= (0,5:0,25).(x5 : x2) + (3,2 : 0,25). (x3 : x2 ) - (2 : 0,25). (x2 : x2)
= 2x3 + 12,8x - 8
b) (0,5x5 + 3,2x3 – 2x2 ) : 0,25x3
Không thực hiện phép tính hãy so sánh các biểu thức sau:
a) A= -3.7.(-2).(-13) và B= -1.(-2).(-3).(-4).5
b) M= -7.(-6).(-5)...5.6.7 và N= -20.(-19).(-18)...(-2).(-1)
c) P= 2m2.n5.(-7)4 và Q= -3.m3.n7.(-11)2 (m>0; n<0)
a) Ta có:
\(A=-3\cdot7\cdot\left(-2\right)\cdot\left(-13\right)\)
\(A=-21\cdot26\)
\(A=-546\)
\(B=-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot\left(-4\right)\cdot5\)
\(B=2\cdot12\cdot5\)
\(B=2\cdot60\)
\(B=120\)
Mà: \(120>-546\)
\(\Rightarrow B>A\)
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{{a - 1}}{{a + 1}} + \dfrac{{3 - a}}{{a + 1}}\) b) \(\dfrac{b}{{a - b}} + \dfrac{a}{{b - a}}\) c) \(\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}} - \dfrac{{{{\left( {a - b} \right)}^2}}}{{ab}}\)
a) \(\dfrac{a-1}{a+1}+\dfrac{3-a}{a+1}\)
\(=\dfrac{a-1+3-a}{a+1}\)
\(=\dfrac{2}{a+1}\)
b) \(\dfrac{b}{a-b}+\dfrac{a}{b-a}\)
\(=\dfrac{b}{a-b}+\dfrac{-a}{a-b}\)
\(=\dfrac{b-a}{a-b}\)
\(=-1\)
c) \(\dfrac{\left(a+b\right)^2}{ab}-\dfrac{\left(a-b\right)^2}{ab}\)
\(=\dfrac{\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)+\left(a-b\right)\right]}{ab}\)
\(=\dfrac{4ab}{ab}\)
\(=4\)
`a, (a-1)/(a+1) + (3-a)/(a+1)`
`= (a-1+3-a)/(a+1)`
`=2/(a+1)`
`b, b/(a-b) + a/(b-a)`
`= b/(a-b) - a/(a-b)`
`= (b-a)/(a-b)`
`c, (a+b)^2/(ab) -(a-b)^2/(ab)`
`=(a^2+2ab+b^2-a^2+2ab-b^2)/(ab)`
`= (4ab)/(ab)`
Thực hiện các phép nhân phân thức sau:
a) \(\dfrac{{4y}}{{3{x^2}}} \cdot \dfrac{{5{x^3}}}{{2{y^3}}}\)
b) \(\dfrac{{{x^2} - 2x + 1}}{{{x^2} - 1}} \cdot \dfrac{{{x^2} + x}}{{x - 1}}\)
c) \(\dfrac{{2x + {x^2}}}{{{x^2} - x + 1}} \cdot \dfrac{{3{x^3} + 3}}{{3x + 6}}\)
\(a,=\dfrac{4y.5x^3}{3x^2.2y^3}=\dfrac{20x^3y}{6x^2y^3}=\dfrac{10x}{3y^2}\\ b,=\dfrac{\left(x-1\right)^2.x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2.x.\left(x+1\right)}{\left(x-1\right)^2.\left(x+1\right)}=x\)
\(c,=\dfrac{x\left(2+x\right).3\left(x^3+1\right)}{\left(x^2-x+1\right).3.\left(x+2\right)}=\dfrac{3x.\left(x+2\right).\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right).3\left(x+2\right)}=x\left(x+1\right)\)
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{1}{{2a}} + \dfrac{2}{{3b}}\)
b) \(\dfrac{{x - 1}}{{x + 1}} - \dfrac{{x + 1}}{{x - 1}}\)
c) \(\dfrac{{x + y}}{{xy}} - \dfrac{{y + z}}{{yz}}\)
d) \(\dfrac{2}{{x - 3}} - \dfrac{{12}}{{{x^2} - 9}}\)
e) \(\dfrac{1}{{x - 2}} + \dfrac{2}{{{x^2} - 4x + 4}}\)
a: \(=\dfrac{3b+4a}{6ab}\)
b: \(=\dfrac{x^2-2x+1-x^2-2x-1}{x^2-1}=\dfrac{-4x}{x^2-1}\)
c: \(=\dfrac{xz+yz-xy-xz}{xyz}=\dfrac{yz-xy}{xyz}=\dfrac{z-x}{xz}\)
d: \(=\dfrac{2x+6-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)
e: \(=\dfrac{x-2+2}{\left(x-2\right)^2}=\dfrac{x}{\left(x-2\right)^2}\)
Thực hiện các phép chia sau:
a) 945:45; b) 3 121:51
a) 945 : 45 = 21
b) 3 121 : 51 = 61 (dư 10)
1. Quy đồng mẫu các phân số sau:
a) \(\frac{5}{{12}}\) và \(\frac{7}{{15}}\); b) \(\frac{2}{7};\,\,\frac{4}{9}\) và \(\frac{7}{{12}}\).
2. Thực hiện các phép tính sau:
a) \(\frac{3}{8} + \frac{5}{{24}};\) b) \(\frac{7}{{16}} - \frac{5}{{12}}.\)
1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60.
Thừa số phụ:
60:12 =5; 60:15=4
Ta được:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)
b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252.
Thừa số phụ:
252:7 = 36; 252:9 = 28; 252:12 = 21
Ta được:
\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)
\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)
\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)
2. a) Ta có BCNN(8, 24) = 24 nên:
\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)
b) Ta có BCNN(12, 16) = 48 nên:
\(\frac{7}{{16}} - \frac{5}{{12}} = \frac{{7.3}}{{16.3}} - \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} - \frac{{20}}{{48}} = \frac{1}{{48}}\).