Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Trang
Xem chi tiết
Min Suga
Xem chi tiết
Nguyễn Trọng Chiến
2 tháng 2 2021 lúc 17:14

a Để hpt có nghiệm \(\left(x;y\right)=\left(-2;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}-2+3m=4\\-2n+3=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m=6\\-2n=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=2\end{matrix}\right.\)

b Để hpt có vô số nghiệm \(\Leftrightarrow\dfrac{1}{n}=\dfrac{m}{1}=\dfrac{4}{-3}\) \(\left(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\right)\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{n}=-\dfrac{4}{3}\\m=-\dfrac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)

Vậy...

Lê Thị Thanh Tân
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2021 lúc 10:01

Bài 1: 

a) Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Để P=2 thì \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)

\(\Leftrightarrow3\sqrt{x}=2\left(\sqrt{x}+2\right)\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=4\)

hay x=16(nhận)

Vậy: Để P=2 thì x=16

Hồng Phúc
3 tháng 1 2021 lúc 11:24

2.

a, \(m=3\), hệ phương trình trở thành:

\(\left\{{}\begin{matrix}x+3y=9\\3x-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=13\\y=\dfrac{3x-4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{23}{12}\end{matrix}\right.\)

b, \(\left(x;y\right)=\left(-1;3\right)\) là nghiệm của hệ, suy ra:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{10}{3}\\m=-13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại giá trị m thỏa mãn

NV Phú
Xem chi tiết
NV Phú
15 tháng 3 2021 lúc 20:46

ai giải mk vs ạ

 

Cherry
15 tháng 3 2021 lúc 20:48
answer-reply-imageBn tham khảo nhé!
Uyên Phạm
15 tháng 3 2021 lúc 20:50

undefined

nguyen thuy nga
Xem chi tiết
SC__@
24 tháng 2 2021 lúc 12:31

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

Minh Hoàng Nguyễn
Xem chi tiết
Quoc Binh
10 tháng 4 2021 lúc 20:21

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 20:54

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

Nguyễn Hoàng Duy
Xem chi tiết
tthnew
18 tháng 1 2021 lúc 13:17

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

khánh hiền
Xem chi tiết
Nguyễn Minh Quang
19 tháng 1 2021 lúc 0:59

a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)

b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm

Khách vãng lai đã xóa
Kunzy Nguyễn
Xem chi tiết
Minh Triều
10 tháng 1 2016 lúc 14:22

a)Với m=2 thì hpt trở thành:

x-2y=5

2x-y=7

<=>

2x-4y=10

2x-y=7

<=>

-3y=3

2x-y=7

<=>

y=-1

x=3

b)\(\int^{\left(m-1\right)x-my=3m-1}_{2x-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{\frac{6m+2my-2}{m-1}-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{m^2+2m+my+y+3=0}\)

*m2+2m+my+y+3=0

<=>y.(m+1)=-m2-2m-3

*Với m=-1 =>PT vô nghiệm

*Với m khác -1 =>PT có nghiệm là: \(y=\frac{-m^2-2m-3}{m+1}=-m-1-\frac{2}{m+1}\)

 

bí tiếp

trung dũng trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2021 lúc 22:29

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-3y=1\\x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4y=-8\\x+y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=9-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)

b) Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{1}\ne\dfrac{-m}{1}\)

\(\Leftrightarrow-m\ne1\)

hay \(m\ne-1\)

Vậy: Để hệ phương trình có nghiệm duy nhất thì \(m\ne-1\)

c) Để hệ phương trình có vô số nghiệm thì \(\dfrac{1}{1}=\dfrac{-m}{1}=\dfrac{1}{m^2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m=1\\m^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow m=-1\)

Vậy: Để hệ phương trình có vô số nghiệm thì m=-1