Cho hai đường tròn C 1 : x 2 + y 2 − 6 x − 4 y + 9 = 0 v à C 2 : x 2 + y 2 − 2 x − 8 y + 13 = 0 . Giao điểm của hai đường tròn là
A.A(1; 3), B(2; 4)
B.A(1; 2), B(3; 4)
C.A(1; 4), B(2; 3)
D. Không tồn tại
Cho hàm số \(y=\dfrac{1}{2}x^4-x^2+m\)(m là tham số ) có đồ thị (Cm), đường tròn (S)có phương trình \(x^2+y^2+2x+6y+1=0\) và điểm A(-1;-6).Tìm m để tồn tại tiếp tuyến với đồ thị (Cm) cắt đường tròn (S) tại hai điểm phân biệt B,C sao cho tam giác ABC có chu vi đạt giá trị lớn nhất
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
Cho đường tròn (C): (x - 1 ) 2 + (y + 3 ) 2 = 10 và đường thẳng Δ: x + y + 1 = 0, biết đường tròn (C) cắt Δ tại hai điểm phân biệt A và B. Độ dài đoạn thẳng AB bằng:
A. 19 2
B. 38
C. 19 2
D. 38 2
Chọn B.
Vì đường tròn (C) cắt Δ tại hai điểm phân biệt A và B nên tọa độ điểm A và B là nghiệm của hệ phương trình:
Gọi H là trung điểm của AB suy ra IH ⊥ AB ⇒ IH ⊥ Δ.
Xét tam giác AIH vuông tại H ta có:
A H 2 + I H 2 = A I 2 ⇒ A H 2 = A I 2 - I H 2
Cho đường tròn C x^2 + y² + 2x + 5y - 15 = 0 Viết phương trình đường thẳng vuông góc với đường thẳng delta: 4x + 3y - 2 = 0 cắt đường tròn C tại hai điểm a và b sao cho ab=6
cho hai đường tròn C : x^2 + y^2 = 1 và Cm : x^2 + y^2 -2(m+1)x + 4my -5 = 0. Xác định m để Cm tiếp xúc với C
Đường tròn (C) tâm \(I\left(0;0\right)\) bán kính R=1
Đường tròn \(\left(C_m\right)\) tâm \(I'\left(m+1;-2m\right)\) bán kính \(R'=\sqrt{5m^2+2m+6}\)
Ta có: \(II'=\sqrt{\left(m+1\right)^2+\left(2m\right)^2}=\sqrt{5m^2+2m+1}\)
Hai đường tròn tiếp xúc nhau khi:
\(\left[{}\begin{matrix}II'=R+R'\\II'=\left|R-R'\right|\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5m^2+2m+1}=\sqrt{5m^2+2m+6}+1\left(vn\right)\\\sqrt{5m^2+2m+1}=\sqrt{5m^2+2m+6}-1\end{matrix}\right.\)
\(\Rightarrow\sqrt{5m^2+2m+1}+1=\sqrt{5m^2+2m+6}\)
\(\Leftrightarrow\sqrt{5m^2+2m+1}=2\)
\(\Leftrightarrow5m^2+2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{5}\end{matrix}\right.\)
Viết phương trình đường thẳng \(\left(\Delta\right)\) vuông góc với đường thẳng \(\left(d\right):x+y+6=0\) và \(\left(\Delta\right)\) cắt đường tròn \(\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=25\) tại hai điểm M và N sao cho \(S_{\Delta IMN}=\dfrac{25}{2}\) ( biết \(I\) là tâm đường tròn )
Hãy cho biết phương trình nào dưới đây là phương trình đường tròn. Tìm tâm và bán kính của đường tròn đó.
a) \({x^2} - {y^2} - 2x + 4y - 1 = 0\)
b) \({x^2} + {y^2} - 2x + 4y + 6 = 0\)
c) \({x^2} + {y^2} + 6x - 4y + 2 = 0\)
a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).
b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = \sqrt {11} \).
cho đường tròn (c) pt: \(\left(x+1\right)^2+y^2=9.\) viết PT đường thẳng đi qua A(2;3) cắt đường tròn (c) tại 2 điểm M,N so cho MN=6
Đường tròn (C) tâm \(I\left(-1;0\right)\) bán kính \(R=3\)
\(MN=6=2R\Rightarrow MN\) là đường kính
\(\Rightarrow\) Đường thẳng d đi qua tâm I của đường tròn
\(\Rightarrow\) Đường thẳng d là đường thẳng IA
\(\overrightarrow{IA}=\left(3;3\right)=3\left(1;1\right)\Rightarrow\) đường thẳng d nhận (1;-1) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)
cho đường tròn c có pt x^2+y^2-6x+2y+6=0 và điểm A (1;-1) B (1;3) a, cm điểm A thuộc đường tròn và B nằm ngoài đường tròn
PT đường tròn (x - 3)2 + (y + 1)2 = 4
Vậy đường tròn (C) có tâm I (3 ; -1) và bán kính bằng 2
\(\overrightarrow{IA}=\left(-2;0\right)\)⇒ IA = 2 ⇒ A thuộc đường tròn
\(\overrightarrow{IB}=\left(-2;4\right)\) ⇒ IB > 2 ⇒ B nằm ngoài đường tròn
Cho đường tròn C x^2 + y² + 2x + 5y - 15 = 0 Viết phương trình đường thẳng vuông góc với đường thẳng delta: 4x + 3y - 2 = 0 cắt đường tròn C tại hai điểm a và b sao cho ab=6 Giúp với mọi người ơiii SOS
Sửa đề: x^2+y^2+2x+6y-15=0
Δ vuông góc d nên Δ: 3x+4y+c=0
(C);x^2+y^2+2x+6y-15=0
=>x^2+2x+1+y^2+6y+9-25=0
=>(x+1)^2+(y+3)^2=25
=>R=5; I(-1;-3)
Kẻ IH vuông góc AB
=>H là trung điểm của AB
=>AH=6/2=3cm
=>IH=4cm
=>d(I;Δ)=IH=4
=>|c+3-12|/5=4
=>c=-11 hoặc c=29
=>3x+4y-11=0 hoặc 3x+4y+29=0
Trong mặt phẳng Oxy, cho đường thẳng d có phương trình x+y-1=0 và đường tròn (C): ( x - 3 ) 2 + ( y - 1 ) 2 = 1 . Ảnh của đường thẳng d qua phép tịnh tiến theo véc tơ v → = 4 ; 0 cắt đường tròn (C) tại hai điểm A x 1 ; y 1 và B x 2 ; y 2 . Giá trị x 1 + x 2 bằng
A. 5
B. 8
C. 6
D. 7