Nêu một số ví dụ về Nhị Thức Newton
Nhị thức Newton là gì
Nêu ví dụ về nhị thức Newton
Tham khảo :
chrome-untrusted://new-tab-page/custom_background_image?url=https%3A%2F%2Flh5.googleusercontent.com%2Fproxy%2FtjJRG8ELyrHCJQ18ThdF1ybYJ9CP1q6jDyCAECruLxqefc2gvH9YYUjKItQyvmWClmOoC3XivqciC7PbY2-
1NtWxLE7fNsJFqYflxTi2EyE%3Dw3840-h2160-p-k-no-nd-mv
Thức ăn chăn nuôi là gì? Hãy nêu ví dụ về một số loại thức ăn chăn nuôi ở địa phương em.
tham khảo
Thức ăn chăn nuôi là sản phẩm mà vật nuôi ăn, uống ở dạng tươi, sống hoặc đã qua chế biến bao gồm thức ăn hỗn hợp hoàn chỉnh, thức ăn đậm đặc, thức ăn bổ sung và thức ăn truyền thống.
Một số loại thức ăn: Ngũ cốc: lúa mì, ngô, lúa, mì, gạo,... Rau quả: cà rốt, bắp cải, cà chua, bí đỏ, táo, đào,...
nHỊ THỨC NEWTON LÀ GÌ
Tham khảo
Nhị thức Newton là 1 công thức khai triển hàm mũ của tổng. Cụ thể là khai triển một nhị thức bậc n thành một đa thức có n+1 số hạng.
Tham khảo:
Trong toán học, định lý khai triển nhị thức là một định lý toán học về việc khai triển hàm mũ của tổng. Cụ thể, kết quả của định lý này là việc khai triển một nhị thức bậc n thành một đa thức có {\displaystyle n+1} số hạng: {\displaystyle ^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}a^{k}}
TK
Trong toán học, định lý khai triển nhị thức là một định lý toán học về việc khai triển hàm mũ của tổng. Cụ thể, kết quả của định lý này là việc khai triển một nhị thức bậc n thành một đa thức có {\displaystyle n+1} số hạng: {\displaystyle ^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}a^{k}} với:
Nhị thức Newton là gì
Tham khảo
Trong toán học, định lý khai triển nhị thức (ngắn gọn là định lý nhị thức) là một định lý toán học về việc khai triển hàm mũ của tổng. Cụ thể, kết quả của định lý này là việc khai triển một nhị thức bậc {\displaystyle n} thành một đa thức có {\displaystyle n+1} số hạng:
{\displaystyle (x+a)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}a^{k}}
với:
{\displaystyle {n \choose k}={\frac {n!}{(n-k)!k!}}}
Gọi là số tổ hợp chập k của n phần tử.
Định lý này đã được độc lập chứng minh bởi hai người đó là:
Nhà toán học và cơ học Isaac Newton tìm ra trong năm 1665.Nhà toán học James Gregory tìm ra trong năm 1670.Công thức đã giới thiệu còn mang tên là Nhị thức Newton.
Tham khảo
Trong toán học, định lý khai triển nhị thức là một định lý toán học về việc khai triển hàm mũ của tổng. Cụ thể, kết quả của định lý này là việc khai triển một nhị thức bậc n thành một đa thức có {\displaystyle n+1} số hạng: {\displaystyle ^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}a^{k}}
Có ai có thể cho mình các ví dụ về đa thức DƯỚI dạng tổng bình Phương một nhị thức với một hằng số ?
Nêu một số ví dụ khác về chuỗi thức ăn.
Chuỗi 1: Kiến ăn cỏ, ếch ăn kiến, rắn ăn ếch, ếch chết xác phân hủy để cỏ hấp thụ.
Chuỗi 2: Châu chấu ăn cỏ, chuột ăn châu chấu, rắn ăn chuột, diều hâu ăn rắn rồi thải phân làm chất bón cho cỏ.
Em hãy nêu một ví dụ về cách cư xử lịch sự tế nhị?
Người lớn đang nói chuyện thì không xen vào
Ho che miệng lại
...
Lịch sự tế nhị:
+ Không được nói leo
+ Nói năng lịch sự, đàng hoàng ko dc nói cộc lốc
+ Kính trên nhường dưới
+ Không được tò mò chuyện của người khác
- Nói nhẹ nhàng
-Biết lắng nghe
-Biết cảm ơn,xin lỗi
-Biết nhường nhịn
Em hãy nêu ví dụ minh họa về một đặc điểm của thông tin số có thể là lợi thế hoặc thách thức cho người dùng.
Gợi ý:
Chọn đặc điểm của thông tin số: Thông tin số có độ tin cậy khác nhau
⇒ Đây là thách thức cho người dùng vì việc xác định tài liệu nào cung cấp thông tin đáng tin cậy, phân biệt tin giả với tin thật là bài toán không dễ.
Tham khảo!
Đặc điểm thông tin số có độ tin cậy khác nhau vừa là lợi thế vừa là thách thức cho người dùng vì có nhiều thông tin cung cấp đến cho người dùng nhưng người dùng không phân biệt được tin giả hay tin thật.
Em hãy nêu một ví dụ về cách cư xử lịch sự , tế nhị mà e biết
Bạn có thể tham khảo sách giáo dục công dân lớp 6 bài Lịch sự , tế nhị
Chúc bạn học tốt !
- Đến nhà người khác phải khách sáo, không quá thoải mái như nhà mình.