Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2019 lúc 8:19

Chí Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2021 lúc 21:26

a.

\(y'=\dfrac{\left(sinx+cosx\right)'}{2\sqrt{sinx+cosx}}=\dfrac{cosx-sinx}{2\sqrt{sinx+cosx}}\)

b.

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

Tiếp tuyến vuông góc với \(y=\dfrac{1}{4}x+5\) nên có hệ số góc thỏa mãn \(k.\left(\dfrac{1}{4}\right)=-1\Rightarrow k=-4\)

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left(x-1\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-3\\x=2\Rightarrow y=5\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4x-3\\y=-4\left(x-2\right)+5\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 5 2019 lúc 10:42

a) Học sinh tự làm

b) Ta có: y′ = –4 x 3  – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4 x 3  – 2x = –6

⇔ 2 x 3  + x – 3 = 0

⇔ 2( x 3  – 1) + (x – 1) = 0

⇔ (x – 1)(2 x 2  + 2x + 3) = 0

⇔ x = 1(2 x 2  + 2x + 3 > 0, ∀x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10

Mai Anh
Xem chi tiết
Khôi Bùi
11 tháng 5 2022 lúc 21:57

Ta có : \(y=\dfrac{x-1}{x+1}\Rightarrow y'=\dfrac{\left(x+1\right)-\left(x-1\right)}{\left(x+1\right)^2}=\dfrac{2}{\left(x+1\right)^2}\)

Giả sử d' là tiếp tuyến của đths đã cho . Do d' // d : y = \(\dfrac{x-2}{2}\)

\(\Rightarrow d'\) có HSG = 1/2 \(\Rightarrow\dfrac{2}{\left(x+1\right)^2}=\dfrac{1}{2}\Leftrightarrow4=\left(x+1\right)^2\)  \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) 

Với x = 1 . PTTT d' : \(y=\dfrac{1}{2}\left(x-1\right)+0=\dfrac{1}{2}x-\dfrac{1}{2}\)

Với x = -3 . PTTT d' : \(y=\dfrac{1}{2}\left(x+3\right)+2=\dfrac{1}{2}x+\dfrac{7}{2}\)

 

Mai Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 10:46

y'=(x-1)'(x+1)-(x-1)(x+1)'/(x+1)^2=(x+1-x+1)/(x+1)^2=2/(x+1)^2

(d1)//(d)

=>(d1): y=1/2x+b

=>y'=1/2

=>(x+1)^2=4

=>x=1 hoặc x=-3

Khi x=1 thì f(1)=0

y-f(1)=f'(1)(x-1)

=>y-0=1/2(x-1)=1/2x-1/2

Khi x=-3 thì f(-3)=(-4)/(-2)=2

y-f(-3)=f'(-3)(x+3)

=>y-2=1/2(x+3)

=>y=1/2x+3/2+2=1/2x+7/2

B.Trâm
Xem chi tiết
B.Trâm
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 4 2021 lúc 2:04

\(y'=\dfrac{3}{\left(x+1\right)^2}\Rightarrow\) phương trình tiếp tuyến tại \(M\left(m;\dfrac{m-2}{m+1}\right)\) có dạng:

\(y=\dfrac{3}{\left(m+1\right)^2}\left(x-m\right)+\dfrac{m-2}{m+1}\)

\(\Leftrightarrow3x-\left(m+1\right)^2y+m^2-4m-2=0\)

\(P=d\left(I;d\right)=\dfrac{\left|6m+6\right|}{\sqrt{9+\left(m+1\right)^4}}=\dfrac{6}{\sqrt{\left(m+1\right)^2+\dfrac{9}{\left(m+1\right)^2}}}\le\dfrac{6}{\sqrt{2\sqrt{\dfrac{9\left(m+1\right)^2}{\left(m+1\right)^2}}}}=\sqrt{6}\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left(m+1\right)^2=\dfrac{9}{\left(m+1\right)^2}\Leftrightarrow\left(m+1\right)^2=3\Rightarrow m=\) ... lại xấu :)

Quỳnh Anh
Xem chi tiết
Khôi Bùi
23 tháng 4 2022 lúc 20:38

Ta có : \(y=\dfrac{x}{x-1}=1+\dfrac{1}{x-1}\Rightarrow y'=\dfrac{-1}{\left(x-1\right)^2}\)

Giả sử M(xo ; yo) là tiếp điểm của tiếp tuyến d với đths trên \(\). Ta có : 

 PT d : \(y=\dfrac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_{0-1}}=\dfrac{-x}{\left(x_0-1\right)^2}+\dfrac{x_0^2}{\left(x_0-1\right)^2}\) 

K/C từ B(1;1) đến d : d(B;d) = \(\left|\dfrac{\dfrac{1}{\left(x_0-1\right)^2}+1-\dfrac{x_0^2}{\left(x_0-1\right)^2}}{\sqrt{\dfrac{1}{\left(x_0-1\right)^4}+1}}\right|\)  

\(\left|\dfrac{2\left(1-x_0\right)}{\left(x_0-1\right)^2}\right|:\dfrac{\sqrt{\left(x_0-1\right)^4+1}}{\left(x_0-1\right)^2}=\dfrac{2\left|1-x_0\right|}{\sqrt{\left(1-x_0\right)^4+1}}\)   \(\le\dfrac{2\left|1-x_0\right|}{\sqrt{2\left(1-x_0\right)^2}}=\sqrt{2}\)

" = " \(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)

Suy ra : y = -x hoặc y = -x + 4 

Nguyễn Việt Lâm
23 tháng 4 2022 lúc 20:42

\(y'=\dfrac{-1}{\left(x-1\right)^2}\)

Giả sử \(x_0\) là hoành độ tiếp điểm

Phương trình tiếp tuyến d:

\(y=-\dfrac{1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_0-1}\)

\(\Rightarrow x+\left(x_0-1\right)^2y-x_0^2=0\)

\(d\left(B;d\right)=\dfrac{\left|1+\left(x_0-1\right)^2-x_0^2\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2\left|x_0-1\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(x_0-1\right)^2}+\left(x_0-1\right)^2}}\le\dfrac{2}{\sqrt{2}}\)

Dấu "=" xảy ra khi:

\(\dfrac{1}{\left(x_0-1\right)^2}=\left(x_0-1\right)^2\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-x+4\end{matrix}\right.\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 5 2017 lúc 9:39

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2018 lúc 4:20

Ta có: y′ = –4 x 3  – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4 x 3  – 2x = –6

⇔ 2 x 3  + x – 3 = 0

⇔ 2( x 3  – 1) + (x – 1) = 0

⇔ (x – 1)(2 x 2  + 2x + 3) = 0

⇔ x = 1(2 x 2  + 2x + 3 > 0, ∀ x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10