\(\sqrt{\left(1+\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
tính
1.\(\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}\)
2.\(3\sqrt{2}\left(4-\sqrt{2}\right)+3\left(1-2\sqrt{2}\right)^2\)
3.\(\dfrac{1}{2}\left(\sqrt{6}+\sqrt{5}\right)^2-\dfrac{1}{4}\sqrt{120}-\sqrt{\dfrac{15}{2}}\)
4.\(\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
5.\(\left(\sqrt{\sqrt{14}+\sqrt{5}}+\sqrt{\sqrt{14}-\sqrt{5}}\right)^2\)
6.\(\left(\sqrt{3}+1\right)^3-\left(\sqrt{3}-1\right)^3\)
7.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
8.\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
9.\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
1, \(\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)}^2\)
2, \(\sqrt{\left(\sqrt{3+1}\right)^2+\sqrt{\left(1-\sqrt{3}\right)^2}}\)
3, \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
4, \(\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
5, \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
6, \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}\)
1/ \(=2+\sqrt{5}-\left|2-\sqrt{5}\right|=2+\sqrt{5}-\sqrt{5}+2=4\)
2/ bạn coi lại đề
3/ \(=\sqrt{2}+1-\left|1-\sqrt{2}\right|=\sqrt{2}+1-\sqrt{2}+1=2\)
4/ \(=\sqrt{3}+2-\left|\sqrt{3}-2\right|=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\)
5/ \(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
6/ \(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)
Các bạn giúp mình với, tối nay mình nộp rồi.
Câu 6 sửa lại đề giúp mình như này nhé:
\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
Tính:
\(A=2\sqrt{\left(-3\right)^6}+2\sqrt{\left(-2\right)^4}-4\sqrt{\left(-2\right)^6}\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}-5\right)^2}\)
\(E=\sqrt{17^2-8^2}-\sqrt{3^2+4^2}\)
\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)
\(=54+8-32=30\)
\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)
\(=5-2\sqrt{2}\)
\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)
\(=2-2\sqrt{3}\)
\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)
\(=2\sqrt{6}\)
\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)
`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`
Thực hiện phép tính
a)\(\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}\)
b)\(2.\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2\sqrt{3}+1\right)^2}\)
c)\(4.\sqrt{\left(2-\dfrac{\sqrt{3}}{2}\right)^2}-3.\sqrt{\left(\sqrt{3}-1\right)^2}\)
d)\(\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
e)\(\left(\sqrt{3}-1\right)^2+\left(2\sqrt{3}+1\right)^2\)
g)\(\left(1-2\sqrt{2}\right)^2-\left(\sqrt{2}+1\right)^2\)
a, \(\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}\)
\(=\left|\sqrt{2}-1\right|+\left|3\sqrt{2}-2\right|\)
\(=\sqrt{2}-1+3\sqrt{2}-2=4\sqrt{2}-3\)
b, \(2\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2\sqrt{3}+1\right)^2}\)
\(=2\left|\sqrt{3}-1\right|-\left|2\sqrt{3}+1\right|\)
\(=2\sqrt{3}-2-2\sqrt{3}-1=-3\)
c, \(4\sqrt{\left(2-\dfrac{\sqrt{3}}{2}\right)^2}-3\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=4\left|2-\dfrac{\sqrt{3}}{2}\right|-3\left|\sqrt{3}-1\right|\)
\(=8-2\sqrt{3}-3\sqrt{3}+3=11-5\sqrt{3}\)
d, \(\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\left|\sqrt{2}+1\right|+\left|\sqrt{2}-1\right|\)
\(=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)
1. Tính
a. \(\left(3\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-3\sqrt{2}\right)\)
b. \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}\)
c. \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}\)
d. \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}\)
c: Ta có: \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}\)
\(=4+\sqrt{10}-4+\sqrt{10}\)
\(=2\sqrt{10}\)
d: Ta có: \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}\)
\(=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1\)
\(=2\sqrt{2}\)
a) \(=\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2=12-18=-6\)
b) \(=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}-\sqrt{2015}=-\sqrt{2013}-\sqrt{2015}\)
c) \(=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)
d) \(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)
1> Rut gon
a)\(\sqrt{6-2\sqrt{2}+2\sqrt{3}-2\sqrt{6}}\)
b) \(\left(\sqrt{2}+1\right)\left(\left(\sqrt{2}\right)^2+1\right)\left(\left(\sqrt{2}\right)^4+1\right)\left(\left(\sqrt{2}\right)^8+1\right)\left(\left(\sqrt{2}\right)^{16}+1\right)\)
c)\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
d) \(\sqrt{3-\frac{4\sqrt{5}}{3}}+\sqrt{3+\frac{4\sqrt{5}}{3}}\)
Rút gọn :
\(\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
b)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
c)\(\left(\sqrt{5}+1\right)\left(\sqrt{7}+1\right)\left(\sqrt{35}+1\right)\left(34-4\sqrt{7}-6\sqrt{5}\right)\)
d) \(\left(\sqrt{7}+1\right)\left(2\sqrt{2}-1\right)\left(2\sqrt{14}-1\right)\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
e)\(\left(3\sqrt{2}+1\right)\left(2\sqrt{3}+1\right)\left(6\sqrt{6}+1\right)\left(215-34\sqrt{3}-33\sqrt{2}\right)\)
Rút gọn biểu thức
1) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8+2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
2) \(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right):\left(\sqrt{5}-2\right)\)
3) \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
4) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
5) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{98}-\sqrt{99}}+\frac{1}{\sqrt{99}-\sqrt{100}}\)
6) \(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
7)\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}+2\right)\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(24+8\sqrt{6}\right)\left(\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
Sao làm hổng ai bảo đú.n/g vậy :(((
Thực hiện phép tính.
1) \(\sqrt[3]{\sqrt{2}+1}.\sqrt[3]{3+2\sqrt{2}}:\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)
2) \(\left(\frac{1}{2}.\sqrt[3]{9}-2.\sqrt[3]{3}+3.\sqrt[3]{\frac{1}{3}}\right):2.\sqrt[3]{\frac{1}{3}}\)
3) \(\left(\sqrt[3]{4}+1\right)^3-\left(\sqrt[3]{4}-1\right)^3\)
4) \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\frac{1}{4}\sqrt{8}\right).3\sqrt{6}\)
Rút gọn
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)